Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (2): 267-279   https://doi.org/10.1007/s11709-019-0567-x
  本期目录
Isogeometric cohesive zone model for thin shell delamination analysis based on Kirchhoff-Love shell model
Tran Quoc THAI1, Timon RABCZUK2,3, Xiaoying ZHUANG1()
1. Institute of Continuum Mechanics, Leibniz University of Hannover, Hannover 30167, Germany
2. Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
 全文: PDF(2058 KB)   HTML
Abstract

We present a cohesive zone model for delamination in thin shells and composite structures. The isogeometric (IGA) thin shell model is based on Kirchhoff-Love theory. Non-Uniform Rational B-Splines (NURBS) are used to discretize the exact mid-surface of the shell geometry exploiting their C1-continuity property which avoids rotational degrees of freedom. The fracture process zone is modeled by interface elements with a cohesive law. Two numerical examples are presented to test and validate the proposed formulation in predicting the delamination behavior of composite structures.

Key wordscohesive zone model    IGA    Kirchhoff-Love model    thin shell analysis    delamination
收稿日期: 2018-10-05      出版日期: 2020-05-08
Corresponding Author(s): Xiaoying ZHUANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 267-279.
Tran Quoc THAI, Timon RABCZUK, Xiaoying ZHUANG. Isogeometric cohesive zone model for thin shell delamination analysis based on Kirchhoff-Love shell model. Front. Struct. Civ. Eng., 2020, 14(2): 267-279.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-019-0567-x
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I2/267
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
control points data number X Y Z weight factor
1 0.06 0.00 0.00 1.000000
2 0.06 0.00 0.01 0.707107
3 0.05 0.00 0.01 1.000000
4 0.06 0.06 0.00 0.707107
5 0.06 0.06 0.01 0.500000
6 0.05 0.05 0.01 0.707107
7 0.00 0.06 0.00 1.000000
8 0.00 0.06 0.01 0.707107
9 0.00 0.05 0.01 1.000000
  
1 T Rabczuk. Computational methods for fracture in brittle and quasibrittle solids: State-of-the-art review and future perspectives. ISRN Applied Mathematics, 2013, 2013: 849231
2 T Belytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
3 N Moës, J Dolbow, T Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
4 T Belytschko, R Gracie, G Ventura. A review of extended/generalized finite element methods for material modeling. Modelling and Simulation in Materials Science and Engineering, 2009, 17(4): 043001
https://doi.org/10.1088/0965-0393/17/4/043001
5 T Strouboulis, K Copps, I Babuška. The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(32–33): 4081–4193
https://doi.org/10.1016/S0045-7825(01)00188-8
6 T Belytschko, Y Y Lu, L Gu. Element-free galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256
https://doi.org/10.1002/nme.1620370205
7 X Zhuang, C Augarde, K Mathisen. Fracture modeling using meshless methods and level sets in 3d: Framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998
https://doi.org/10.1002/nme.4365
8 X Zhuang, H Zhu, C Augarde. An improved meshless shepard and least squares method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357
https://doi.org/10.1007/s00466-013-0912-1
9 X Zhuang, C Augarde, S Bordas. Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2d modelling. International Journal for Numerical Methods in Engineering, 2011, 86(2): 249–268
https://doi.org/10.1002/nme.3063
10 J C Simo, J Oliver, F Armero. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics, 1993, 12(5): 277–296
https://doi.org/10.1007/BF00372173
11 Y Zhang, X Zhuang. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144: 84–100
https://doi.org/10.1016/j.finel.2017.10.007
12 Y Zhang, R Lackner, M Zeiml, H A Mang. Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations. Computer Methods in Applied Mechanics and Engineering, 2015, 287: 335–366
https://doi.org/10.1016/j.cma.2015.02.001
13 M Nikolić, X N Do, A Ibrahimbegovic, Ž Nikolić. Crack propagation in dynamics by embedded strong discontinuity approach: Enhanced solid versus discrete lattice model. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 480–499
https://doi.org/10.1016/j.cma.2018.06.012
14 M Nikolic, A Ibrahimbegovic, P Miscevic. Brittle and ductile failure of rocks: Embedded discontinuity approach for representing mode I and mode II failure mechanisms. International Journal for Numerical Methods in Engineering, 2015, 102(8): 1507–1526
https://doi.org/10.1002/nme.4866
15 F Han, G Lubineau, Y Azdoud, A Askari. A morphing approach to couple state-based peridynamics with classical continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336–358
https://doi.org/10.1016/j.cma.2015.12.024
16 H Ren, X Zhuang, T Rabczuk. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
17 T Rabczuk, H Ren. A peridynamics formulation for quasi-static fracture and contact in rock. Engineering Geology, 2017, 225: 42–48
https://doi.org/10.1016/j.enggeo.2017.05.001
18 A Hillerborg, M Modéer, P E Petersson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773–781
https://doi.org/10.1016/0008-8846(76)90007-7
19 J Schellekens, R De Borst. A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. International Journal of Solids and Structures, 1993, 30(9): 1239–1253
https://doi.org/10.1016/0020-7683(93)90014-X
20 O Allix, P Ladeveze, A Corigliano. Damage analysis of interlaminar fracture specimens. Composite Structures, 1995, 31(1): 61–74
https://doi.org/10.1016/0263-8223(95)00002-X
21 G Alfano, M Crisfield. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. International Journal for Numerical Methods in Engineering, 2001, 50(7): 1701–1736
https://doi.org/10.1002/nme.93
22 A Needleman. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 1987, 54(3): 525–531
https://doi.org/10.1115/1.3173064
23 V Tvergaard. Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering A, 1990, 125(2): 203–213
https://doi.org/10.1016/0921-5093(90)90170-8
24 P W Harper, S R Hallett. Cohesive zone length in numerical simulations of composite delamination. Engineering Fracture Mechanics, 2008, 75(16): 4774–4792
https://doi.org/10.1016/j.engfracmech.2008.06.004
25 P P Camanho, C G Davila, M De Moura. Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials, 2003, 37(16): 1415–1438
https://doi.org/10.1177/0021998303034505
26 M Ortiz, A Pandolfi. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 1999, 44(9): 1267–1282
https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
27 J M Hohberg. A note on spurious oscillations in FEM joint elements. Earthquake Engineering & Structural Dynamics, 1990, 19(5): 773–779
https://doi.org/10.1002/eqe.4290190511
28 V P Nguyen, P Kerfriden, S P Bordas. Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis. Composites. Part B, Engineering, 2014, 60: 193–212
https://doi.org/10.1016/j.compositesb.2013.12.018
29 W Sprenger, F Gruttmann, W Wagner. Delamination growth analysis in laminated structures with continuum-based 3d-shell elements and a viscoplastic softening model. Computer Methods in Applied Mechanics and Engineering, 2000, 185(2–4): 123–139
https://doi.org/10.1016/S0045-7825(99)00255-8
30 R Borst, M A Gutiérrez, G N Wells, J J Remmers, H Askes. Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. International Journal for Numerical Methods in Engineering, 2004, 60(1): 289–315
https://doi.org/10.1002/nme.963
31 E Sacco, F Lebon. A damage-friction interface model derived from micromechanical approach. International Journal of Solids and Structures, 2012, 49(26): 3666–3680
https://doi.org/10.1016/j.ijsolstr.2012.07.028
32 F Freddi, E Sacco. An interface damage model accounting for in plane effects. International Journal of Solids and Structures, 2014, 51(25–26): 4230–4244
https://doi.org/10.1016/j.ijsolstr.2014.08.010
33 J Simo. On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 56-DOF finite element formulations. Computer Methods in Applied Mechanics and Engineering, 1993, 108(3–4): 319–339
https://doi.org/10.1016/0045-7825(93)90008-L
34 J C Simo, D D Fox, M S Rifai. On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Computer Methods in Applied Mechanics and Engineering, 1990, 79(1): 21–70
https://doi.org/10.1016/0045-7825(90)90094-3
35 J Dolbow, N Moës, T Belytschko. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 2000, 36(3–4): 235–260
https://doi.org/10.1016/S0168-874X(00)00035-4
36 T Rabczuk, S Bordas, G Zi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
37 A Asadpoure, S Mohammadi. Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. International Journal for Numerical Methods in Engineering, 2007, 69(10): 2150–2172
https://doi.org/10.1002/nme.1839
38 T Belytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
39 N Moës, T Belytschko. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 2002, 69(7): 813–833
https://doi.org/10.1016/S0013-7944(01)00128-X
40 J H Song, P M Areias, T Belytschko. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893
https://doi.org/10.1002/nme.1652
41 F P Meer, L J Sluys. A phantom node formulation with mixed mode cohesive law for splitting in laminates. International Journal of Fracture, 2009, 158(2): 107–124
https://doi.org/10.1007/s10704-009-9344-5
42 P Areias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
43 P Areias, T Rabczuk, P Camanho. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
https://doi.org/10.1007/s00466-013-0855-6
44 P Areias, T Rabczuk, M Msekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
45 T Q Thai, T Rabczuk, Y Bazilevs, G Meschke. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
https://doi.org/10.1016/j.cma.2016.02.031
46 M Ambati, L De Lorenzis. Phase-field modeling of brittle and ductile fracture in shells with isogeometric nurbs-based solid-shell elements. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 351–373
https://doi.org/10.1016/j.cma.2016.02.017
47 S Zhou, X Zhuang, H Zhu, T Rabczuk. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192
https://doi.org/10.1016/j.tafmec.2018.04.011
48 J Y Wu. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 767–797
https://doi.org/10.1016/j.cma.2018.06.007
49 J Y Wu, V P Nguyen. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018, 119: 20–42
https://doi.org/10.1016/j.jmps.2018.06.006
50 T Rabczuk, P Areias, T Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
51 F Amiri, D Millán, Y Shen, T Rabczuk, M Arroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
52 T Rabczuk, R Gracie, J H Song, T Belytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
53 F Amiri, D Millán, M Arroyo, M Silani, T Rabczuk. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 254–275
https://doi.org/10.1016/j.cma.2016.02.011
54 T J Hughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
55 D Benson, Y Bazilevs, M C Hsu, T Hughes. Isogeometric shell analysis: The Reissner-Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5–8): 276–289
https://doi.org/10.1016/j.cma.2009.05.011
56 D Benson, S Hartmann, Y Bazilevs, M C Hsu, T Hughes. Blended isogeometric shells. Computer Methods in Applied Mechanics and Engineering, 2013, 255: 133–146
https://doi.org/10.1016/j.cma.2012.11.020
57 S Hosseini, J J Remmers, C V Verhoosel, R De Borst. Propagation of delamination in composite materials with isogeometric continuum shell elements. International Journal for Numerical Methods in Engineering, 2015, 102(3–4): 159–179
https://doi.org/10.1002/nme.4730
58 R Bouclier, T Elguedj, A Combescure. Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method. Computer Methods in Applied Mechanics and Engineering, 2013, 267: 86–110
https://doi.org/10.1016/j.cma.2013.08.002
59 D Benson, Y Bazilevs, M C Hsu, T Hughes. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13–16): 1367–1378
https://doi.org/10.1016/j.cma.2010.12.003
60 J Kiendl, K U Bletzinger, J Linhard, R Wüchner. Isogeometric shell analysis with Kirchhoff-Love elements. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49–52): 3902–3914
https://doi.org/10.1016/j.cma.2009.08.013
61 N Nguyen-Thanh, N Valizadeh, M Nguyen, H Nguyen-Xuan, X Zhuang, P Areias, G Zi, Y Bazilevs, L De Lorenzis, T Rabczuk. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
62 N Nguyen-Thanh, K Zhou, X Zhuang, P Areias, H Nguyen-Xuan, Y Bazilevs, T Rabczuk. Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 1157–1178
https://doi.org/10.1016/j.cma.2016.12.002
63 N Nguyen-Thanh, J Kiendl, H Nguyen-Xuan, R Wüchner, K U Bletzinger, Y Bazilevs, T Rabczuk. Rotation free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47–48): 3410–3424
https://doi.org/10.1016/j.cma.2011.08.014
64 P Wang, J Xu, J Deng, F Chen. Adaptive isogeometric analysis using rational PHT-splines. Computer Aided Design, 2011, 43(11): 1438–1448
https://doi.org/10.1016/j.cad.2011.08.026
65 J Reinoso, M Paggi, A Blázquez. A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates. Composites. Part B, Engineering, 2017, 109: 116–128
https://doi.org/10.1016/j.compositesb.2016.10.042
66 C V Verhoosel, J J Remmers, M A Gutiérrez. A dissipation-based arc-length method for robust simulation of brittle and ductile failure. International Journal for Numerical Methods in Engineering, 2009, 77(9): 1290–1321
https://doi.org/10.1002/nme.2447
67 V Kaliakin, J Li. Insight into deficiencies associated with commonly used zero-thickness interface elements. Computers and Geotechnics, 1995, 17(2): 225–252
https://doi.org/10.1016/0266-352X(95)93870-O
68 J Vignollet, S May, R de Borst. On the numerical integration of isogeometric interface elements. International Journal for Numerical Methods in Engineering, 2015, 102(11): 1733–1749
https://doi.org/10.1002/nme.4867
69 ASTM D5528-13. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM International, 2013
70 J J C Remmers, R Borst, C V Verhoosel, A Needleman. The cohesive band model: A cohesive surface formulation with stress triaxiality. International Journal of Fracture, 2013, 181(2): 177–188
https://doi.org/10.1007/s10704-013-9834-3
71 M L Benzeggagh, M Kenane. Measurement of mixed-mode de lamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 1996, 56(4): 439–449
https://doi.org/10.1016/0266-3538(96)00005-X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed