Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (1): 62-81   https://doi.org/10.1007/s11709-019-0570-2
  本期目录
Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations
Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY()
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
 全文: PDF(5615 KB)   HTML
Abstract

This article describes a novel approach for deciding optimal horizontal extent of soil domain to be used for finite element based numerical dynamic soil structure interaction (SSI) studies. SSI model for a 12 storied building frame, supported on pile foundation-soil system, is developed in the finite element based software framework, OpenSEES. Three different structure-foundation configurations are analyzed under different ground motion characteristics. Lateral extent of soil domain, along with the soil properties, were varied exhaustively for a particular structural configuration. Based on the reduction in the variation of acceleration response at different locations in the SSI system (quantified by normalized root mean square error, NRMSE), the optimum lateral extent of the soil domain is prescribed for various structural widths, soil types and peak ground acceleration levels of ground motion. Compared to the past studies, error estimation analysis shows that the relationships prescribed in the present study are credible and more inclusive of the various factors that influence SSI. These relationships can be readily applied for deciding upon the lateral extent of the soil domain for conducting precise SSI analysis with reduced computational time.

Key wordssoil structure interaction    optimum lateral extent of soil domain length    multi-storyed framed building    pile foundation    OpenSEES    L-K boundaries    dynamic analysis
收稿日期: 2018-08-15      出版日期: 2020-02-21
Corresponding Author(s): Arindam DEY   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(1): 62-81.
Nishant SHARMA, Kaustubh DASGUPTA, Arindam DEY. Optimum lateral extent of soil domain for dynamic SSI analysis of RC framed buildings on pile foundations. Front. Struct. Civ. Eng., 2020, 14(1): 62-81.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-019-0570-2
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I1/62
past studies W (m) H (m) Ω = (L/W) remarks
Lu et al. [19] 14.1 10.00 PF/EL/VB/FE
Pala et al. [20] 9.0 25-100 155.00 SF/L/VB/FE
Rayhani and El Nagar [21] 5.5 5.00 SF/NL/EB/FD
Matinmanesh and Asheghabadi [22] 10.0 50 60.00 SF/L/SD/FE
Tabatabaiefar and Massumi [23] 8.0 7.50 SF/L/EB/FE
12.0 11.25 SF/L/EB/FE
Tabatabaiefar et al. [24] 12.0 5.00 SF/NL/VB/FD
Nateghi-A and Rezaei-Tabrizi [25] 40.0 10.00 SF/L/EB/FE
Sáez et al. [26] 6.0 30
6.67 SF/NL/O/FE
10.0 7.00 SF/NL/O/FE
Hokmabadi et al. [27] 15.0 30 4.00 SF&PF/NL/VB/FD
Van Nguyen et al. [28] 15.0 30 9.33 SF/EL/IE/FE
Ghandil and Behnamfar [29] 20.0 45 4.00 PF/EL/VB/FE
Tab.1  
Fig.1  
type of soil r (t/m3) j (°) n vs (m/s) Gr (kPa) gmax d FT
loose (TY-I) 1.7 29 0.33 180 5.5 × 104 0.1 0.5 29°
medium (TY-II) 1.9 33 0.33 200 7.5 × 104 0.1 0.5 27°
medium-dense (TY-III) 2.0 37 0.35 225 1.0 × 105 0.1 0.5 27°
Tab.2  
type of soil dia. of individual pile (m) length of individual pile (m) no. of plies in a group dia. of equivalent pile (m)
loose (TY-I) 0.50 15 3 1.47
medium (TY-II) 0.45 15 3 1.32
medium-dense (TY-III) 0.40 15 3 1.17
Tab.3  
Fig.2  
Fig.3  
structural width (m) domain length (m) computational time required for analysis (in hours)
motion 1 (M1) motion 2 (M2) motion 3 (M3)
TY-I TY-II TY-III TY-I TY-II TY-III TY-I TY-II TY-III
15 753 12.23 15.35 15.38 8.23 8.51 8.50 44.58 43.63 42.41
681 8.00 11.81 14.56 6.57 8.91 7.63 35.86 33.82 33.65
603 7.86 9.00 11.00 5.13 8.03 7.52 27.57 26.51 26.25
543 5.40 7.02 8.09 5.15 7.27 6.23 22.53 18.02 21.93
483 4.00 5.56 4.91 4.23 6.58 5.42 18.46 17.89 17.66
423 3.28 4.13 3.46 3.15 4.53 3.69 14.96 13.61 14.25
363 2.50 3.06 2.63 2.75 3.64 2.79 12.03 10.78 11.28
303 1.75 2.23 1.86 1.68 2.65 2.12 9.08 8.08 8.58
243 1.42 1.55 1.47 1.18 1.18 1.18 6.26 5.75 5.95
183 0.83 1.03 0.83 0.78 0.83 0.83 4.07 3.83 3.97
153 0.75 0.75 0.75 0.55 0.55 0.55 3.19 3.07 3.05
123 0.53 0.56 0.54 0.27 0.27 0.27 2.23 2.18 2.16
93 0.46 0.48 0.47 0.23 0.23 0.23 1.58 1.52 1.45
75 0.33 0.35 0.34 0.17 0.17 0.17 1.28 1.12 1.08
63 0.21 0.23 0.22 0.12 0.12 0.12 1.03 0.96 0.87
45 0.14 0.13 0.12 0.06 0.06 0.06 0.61 0.60 0.57
33 0.05 0.05 0.05 0.03 0.03 0.03 0.41 0.41 0.36
27 1353 34.23 33.78 32.50 32.23 29.155 33.90 282.33 245.17 201.22
1215 29.68 28.96 27.68 24.16 24.56 26.36 218.90 190.46 155.42
1083 24.56 23.93 23.27 20.17 20.39 20.84 166.00 142.59 116.70
975 20.56 19.34 19.92 16.23 17.42 17.79 120.63 107.35 90.45
867 17.26 15.56 15.67 13.56 13.88 14.34 106.20 82.81 66.52
759 10.25 8.37 7.69 8.56 6.03 8.59 78.35 56.18 42.13
651 8.56 5.13 6.31 6.75 4.76 6.32 56.65 38.35 35.52
543 6.58 3.74 4.57 4.49 3.43 4.14 38.56 26.82 24.89
435 4.56 2.68 3.02 2.09 2.25 2.71 24.35 18.35 17.59
327 2.36 1.74 1.82 1.55 1.13 1.64 15.63 11.33 11.46
273 1.56 1.29 1.22 1.16 0.87 1.00 12.36 8.72 8.78
219 1.15 0.64 0.60 0.71 0.67 0.74 10.63 6.17 6.52
165 0.96 0.45 0.43 0.48 0.45 0.48 6.35 3.97 4.73
135 0.65 0.36 0.36 0.34 0.35 0.21 4.35 2.93 3.15
111 0.43 0.29 0.28 0.14 0.16 0.17 2.48 2.19 2.45
81 0.23 0.15 0.20 0.10 0.12 0.12 1.15 1.38 1.53
57 0.10 0.06 0.13 0.06 0.07 0.07 0.15 0.83 0.92
45 2253 117.5 114.98 371.28 123.18 104.24 96.10 197.26 252.97 207.12
2025 87.66 82.60 244.26 99.5 75.06 71.24 139.37 199.74 147.73
1803 65.44 58.72 145.82 73.30 48.96 51.27 100.56 152.36 109.61
1623 50.72 42.82 129.82 59.83 50.26 60.58 76.64 116.56 80.93
1443 37.34 37.08 95.40 46.89 40.71 24.92 58.35 87.25 61.66
1263 29.73 30.00 49.21 35.26 29.87 24.24 43.48 62.12 48.69
1083 23.80 23.97 49.65 15.63 18.45 19.22 30.15 41.07 35.27
903 16.84 18.17 26.78 10.90 10.04 13.70 19.33 27.14 25.65
723 10.71 11.66 20.00 5.57 7.24 9.20 12.17 16.96 15.21
543 5.78 6.33 10.26 3.16 4.78 3.90 7.72 8.66 7.23
453 2.40 3.63 7.13 2.33 3.58 2.55 5.19 5.03 5.13
363 1.75 2.34 5.23 1.41 1.53 1.99 3.13 4.22 3.28
273 1.24 1.47 3.50 0.89 1.01 1.17 2.53 2.21 2.13
225 0.98 0.89 2.97 0.59 0.80 0.88 1.21 1.14 1.17
183 0.76 0.64 2.33 0.47 0.60 0.59 0.51 0.50 0.48
135 0.51 0.43 2.02 0.30 0.25 0.36 0.30 0.31 0.29
93 0.33 0.26 1.44 0.19 0.16 0.20 0.12 0.18 0.15
Tab.4  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
structural width, W soil
type
ground motion m1 C1 m2 C2 R12 R22 Ω
15 m TY-I M1 -0.0860 1.0862 -0.0052 0.2819 0.91 0.90 9.95
TY-I M2 -0.0474 0.4663 -0.0044 0.1862 0.97 0.93 6.51
TY-I M3 -0.0221 0.1813 -0.0016 0.0698 0.98 0.96 5.44
TY-II M1 -0.0929 1.1503 -0.0058 0.4058 0.95 0.91 8.55
TY-II M2 -0.0410 0.4015 -0.0034 0.1515 0.97 0.97 6.65
TY-II M3 -0.0205 0.1774 -0.0017 0.0715 0.97 0.93 5.63
TY-III M1 -0.0775 1.1087 -0.0063 0.4815 0.90 0.93 8.81
TY-III M2 -0.0446 0.4056 -0.0037 0.1651 0.97 0.95 5.88
TY-III M3 -0.0258 0.1894 -0.0016 0.0679 0.99 0.90 5.02
27 m TY-I M1 -0.1492 1.235 -0.0054 0.3088 0.92 0.90 6.44
TY-I M2 -0.0522 0.4586 -0.0045 0.1885 0.91 0.90 5.62
TY-I M3 -0.0208 0.1631 -0.0016 0.0758 0.96 0.91 4.55
TY-II M1 -0.1279 1.2095 -0.0054 0.4646 0.91 0.92 6.08
TY-II M2 -0.0416 0.3696 -0.0038 0.1704 0.90 0.94 5.23
TY-II M3 -0.0181 0.1518 -0.0018 0.0736 0.91 0.90 4.80
TY-III M1 -0.1037 1.1712 -0.0062 0.5201 0.93 0.92 6.68
TY-III M2 -0.0362 0.3288 -0.0034 0.1461 0.91 0.85 5.57
TY-III M3 -0.0197 0.1541 -0.0016 0.0651 0.91 0.81 4.92
45 m TY-I M1 -0.1341 1.2002 -0.0044 0.4036 0.90 0.80 6.14
TY-I M2 -0.0695 0.5572 -0.0040 0.1742 0.98 0.75 5.85
TY-I M3 -0.0305 0.2224 -0.0017 0.0769 0.98 0.91 5.19
TY-II M1 -0.1019 1.1841 -0.0036 0.5955 0.96 0.91 5.98
TY-II M2 -0.0475 0.4484 -0.0035 0.2076 0.99 0.71 5.47
TY-II M3 -0.0252 0.1998 -0.0017 0.0732 0.97 0.78 5.38
TY-III M1 -0.1079 1.1702 -0.0063 0.5331 0.85 0.80 6.27
TY-III M2 -0.0454 0.4183 -0.0035 0.1749 0.98 0.81 5.81
TY-III M3 -0.0120 0.1337 -0.0017 0.0771 0.98 0.88 5.49
Tab.5  
Fig.11  
Fig.12  
Fig.13  
structure width, W PGA W W× W (m) difference in peak acceleration, % computational time*
soil node pile node structure node
15 m 0.82g 10.00 150 2 9 5 4.3%
0.43g 7.06 106 4 4 7 3.5%
0.22g 5.53 83 1 2 4 2.0%
27 m 0.82g 8.81 238 5 7 4 3.3%
0.43g 6.70 181 4 6 1 2.2%
0.22g 5.52 149 1 4 6 1.0%
45 m 0.82g 7.00 315 2 4 1 1.0%
0.43g 6.15 277 8 6 4 0.9%
0.22g 5.51 248 9 9 9 0.8%
Tab.6  
Fig.14  
1 A S Veletsos, J W Meek. Dynamic behaviour of building foundation systems. Earthquake Engineering & Structural Dynamics, 1974, 3(2): 121–138
https://doi.org/10.1002/eqe.4290030203
2 J Bielak. Dynamic response of non linear building foundation systems. Earthquake Engineering & Structural Dynamics, 1978, 6(1): 17–30
https://doi.org/10.1002/eqe.4290060104
3 G Oliveto, A Santini. A simplified model for the dynamic soil-structure interaction of planar frame-wall systems. Engineering Structures, 1993, 15(6): 431–438
https://doi.org/10.1016/0141-0296(93)90061-8
4 A Nadjai, D Johnson. Elastic analysis of spatial shear wall systems with flexible bases. Structural Design of Tall Buildings, 1996, 5(1): 55–72
https://doi.org/10.1002/(SICI)1099-1794(199603)5:1<55::AID-TAL64>3.0.CO;2-N
5 J Bielak, K Loukakis, Y Hisada, C Yoshimura. Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: Theory. Bulletin of the Seismological Society of America, 2003, 93(2): 817–824
https://doi.org/10.1785/0120010251
6 S C Dutta, K Bhattacharya, R Roy. Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2004, 24(12): 893–914
https://doi.org/10.1016/j.soildyn.2004.07.001
7 A Bárcena, L Esteva. Influence of dynamic soil—structure interaction on the nonlinear response and seismic reliability of multistorey systems. Earthquake Engineering & Structural Dynamics, 2007, 36(3): 327–346
https://doi.org/10.1002/eqe.633
8 C Song, J P Wolf. The scaled boundary finite-element method —alias consistent infinitesimal finite-element cell method—for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3–4): 329–355
https://doi.org/10.1016/S0045-7825(97)00021-2
9 J P Wolf, C Song. Some cornerstones of dynamic soil-structure interaction. Engineering Structures, 2002, 24(1): 13–28
https://doi.org/10.1016/S0141-0296(01)00082-7
10 M C Genes, S Kocak. Dynamic soil-structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model. International Journal for Numerical Methods in Engineering, 2005, 62(6): 798–823
https://doi.org/10.1002/nme.1212
11 M C Genes. Dynamic analysis of large-scale SSI systems for layered unbounded media via a parallelized coupled finite-element/boundary-element/scaled boundary finite-element model. Engineering Analysis with Boundary Elements, 2012, 36(5): 845–857
https://doi.org/10.1016/j.enganabound.2011.11.013
12 Y Khudari Bek, K M Hamdia, T Rabczuk, C Könke. Micromechanical model for polymeric nano-composites material based on SBFEM. Composite Structures, 2018, 194: 516–526
https://doi.org/10.1016/j.compstruct.2018.03.064
13 JSCE. Guidelines for Concrete No. 15: Standard Specifications for Concrete Structures. Tokyo: Japan Society of Civil Engineers, 2007
14 T K Datta. Seismic Analysis of Structures. New York: John Wiley & Sons, 2010
15 S L Kramer. Geotechnical Earthquake Engineering. Upper Saddle River, NJ: Prentice Hall, 1996
16 S Ghosh, E Wilson. Dynamic Stress Analysis of Axisymmetric Structures under Arbitrary Loading. Report No. EERC 69-10. Berkeley: University of California, 1969
17 J M Roesset, M M Ettouney. Transmitting boundaries: A comparison. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, 1(2): 151–176
https://doi.org/10.1002/nag.1610010204
18 J P Wolf. A comparison of time-domain transmitting boundaries. Earthquake Engineering & Structural Dynamics, 1986, 14(4): 655–673
https://doi.org/10.1002/eqe.4290140412
19 X Lu, B Chen, P Li, Y Chen. Numerical analysis of tall buildings considering dynamic soil-structure interaction. Journal of Asian Architecture and Building Engineering, 2003, 2(1): 1–8
https://doi.org/10.3130/jaabe.2.1
20 M Pala, N Caglar, M Elmas, A Cevik, M Saribiyik. Dynamic soil-structure interaction analysis of buildings by neural networks. Construction & Building Materials, 2008, 22(3): 330–342
https://doi.org/10.1016/j.conbuildmat.2006.08.015
21 M H Rayhani, M H El Naggar. Numerical modeling of seismic response of rigid foundation on soft soil. International Journal of Geomechanics, 2008, 8(6): 336–346
https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336)
22 H Matinmanesh, M S Asheghabadi. Seismic analysis on soil-structure interaction of buildings over sandy soil. Procedia Engineering, 2011, 14: 1737–1743
https://doi.org/10.1016/j.proeng.2011.07.218
23 H R Tabatabaiefar, A Massumi. A simplified method to determine seismic responses of reinforced concrete moment resisting building frames under influence of soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1259–1267
https://doi.org/10.1016/j.soildyn.2010.05.008
24 S H Reza Tabatabaiefar, B Fatahi, B Samali. Seismic behavior of building frames considering dynamic soil-structure interaction. International Journal of Geomechanics, 2013, 13(4): 409–420
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000231
25 F Nateghi-A, A Rezaei-Tabrizi. Nonlinear dynamic response of tall buildings considering structure-soil-structure effects. Structural Design of Tall and Special Buildings, 2013, 22(14): 1075–1082
https://doi.org/10.1002/tal.753
26 E Sáez, F Lopez-Caballero, A Modaressi-Farahmand-Razavi. Inelastic dynamic soil–structure interaction effects on moment-resisting frame buildings. Engineering Structures, 2013, 51: 166–177
https://doi.org/10.1016/j.engstruct.2013.01.020
27 A S Hokmabadi, B Fatahi, B Samali. Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics, 2014, 55: 172–186
https://doi.org/10.1016/j.compgeo.2013.08.011
28 Q V Nguyen, B Fatahi, A S Hokmabadi. The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction. Structural Engineering and Mechanics, 2016, 58(6): 1045–1075
https://doi.org/10.12989/sem.2016.58.6.1045
29 M Ghandil, F Behnamfar. Ductility demands of MRF structures on soft soils considering soil-structure interaction. Soil Dynamics and Earthquake Engineering, 2017, 92: 203–214
https://doi.org/10.1016/j.soildyn.2016.09.051
30 A Elgamal, L Yan, Z Yang, J P Conte. Three-dimensional seismic response of Humboldt Bay bridge-foundation-ground system. Journal of Structural Engineering, 2008, 134(7): 1165–1176
https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1165)
31 Y Zhang, J P Conte, Z Yang, A Elgamal, J Bielak, G Acero. Two-dimensional nonlinear earthquake response analysis of a bridge-foundation-ground system. Earthquake Spectra, 2008, 24(2): 343–386
https://doi.org/10.1193/1.2923925
32 G Mondal, A Prashant, S K Jain. Significance of interface nonlinearity on the seismic response of a well-pier system in cohesionless Soil. Earthquake Spectra, 2012, 28(3): 1117–1145
https://doi.org/10.1193/1.4000074
33 C Kolay, A Prashant, S K Jain. Nonlinear dynamic analysis and seismic coefficient for abutments and retaining walls. Earthquake Spectra, 2013, 29(2): 427–451
https://doi.org/10.1193/1.4000141
34 H F Özel, Y Arici. Comparison of 2D vs. 3D modeling approaches for the analyses of concrete faced rockfill dams. In: Proceedings the of 15th World Conference on Earthquake Engineering. Lisbon, 2012
35 R Luque, J D Bray. Dynamic analyses of two buildings founded on liquefiable soils during the Canterbury earthquake sequence. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 04017067
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001736
36 S Dashti, J D Bray. Numerical simulation of building response on liquefiable sand. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(8): 1235–1249
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000853
37 S Mazzoni, F McKenna, M H Scott, G L Fenves. Open System for Earthquake Engineering Simulation user Manual. Berkeley: University of California, 2009
38 R L Kuhlemeyer, J Lysmer. Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 1973, 99(SM5): 421–427
39 Z Yang, J Lu, A Elgamal. OpenSees Soil Models and Solid-Fluid Fully Coupled Elements, User’s Manual 2008 Version 1.0. San Diego: University of California, 2008
40 D C Drucker, W Prager. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 1952, 10(2): 157–165
https://doi.org/10.1090/qam/48291
41 A Elgamal, Z Yang, E Parra, A Ragheb. Modeling of cyclic mobility in saturated cohesionless soils. International Journal of Plasticity, 2003, 19(6): 883–905
https://doi.org/10.1016/S0749-6419(02)00010-4
42 IS 456. Indian Standard Plain and Reinforece Concrete—Code of Practice. New Delhi: Bureau of Indian Standards, 2000
43 IS 13920. Indian Standard Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces—Code of Practice. New Delhi: Bureau of Indian Standards, 2016
44 IS 2911Part 1/Sec 1. Indian Standard Design and Construction of Pile Foundations—Code of Practice: Concrete Piles. New Delhi: Bureau of Indian Standards, 2010
45 IS 875. Part 2. Indian Standard Code of Practice for Design Loads (Other than Earthquake) for Building and Structures: Imposed Loads. New Delhi: Bureau of Indian Standards, 1987
46 IS 1893. Part 1. Indian Standard Criteria for Earthquake Resistant Design of Structures: General Provisions and Buildings. New Delhi: Bureau of Indian Standards, 2016
47 J Lysmer, R L Kuhlemeyer. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 1969, 95(4): 859–878
48 W B Joyner. A method for calculating nonlinear seismic response in two dimensions. Bulletin of the Seismological Society of America, 1975, 65(5): 1337–1357
49 International Conference of Building Officials. Uniform Building Code. California, 1997
50 M D Trifunac, A G Brady. A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 1975, 65(3): 581–626
51 J J Kempton, J P Stewart. Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthquake Spectra, 2006, 22(4): 985–1013
https://doi.org/10.1193/1.2358175
52 H M Hilber, T J R Hughes, R L Taylor. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 283–292
https://doi.org/10.1002/eqe.4290050306
53 A K Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Englewood Cliffs, NJ: Prentice Hall, 2001
54 Y Zhang, Z Yang, J Bielak, J P Conte, A Elgamal. Treatment of seismic input and boundary conditions in nonlinear seismic analysis of a bridge ground system. In: Proceedings the of the 16th ASCE engineering mechanics conference. Seattle, WA: University of Washington, 2003
55 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
56 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
57 K M Hamdia, H Ghasemi, X Zhuang, N Alajlan, T Rabczuk. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 95–109
https://doi.org/10.1016/j.cma.2018.03.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed