Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (2): 518-531   https://doi.org/10.1007/s11709-020-0611-x
  本期目录
Soil spatial variability impact on the behavior of a reinforced earth wall
Adam HAMROUNI1(), Daniel DIAS2,3, Badreddine SBARTAI4
1. Laboratory InfraRES, Mohammed Cherif Messaadia University, SoukAhras 41000, Algeria
2. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
3. Antea Group, Antony 92160, France
4. Department of Civil Engineering, University of Annaba, Annaba 23000 & LMGHU Laboratory, University of Skikda, Skikda 21000, Algeria
 全文: PDF(1409 KB)   HTML
Abstract

This article presents the soil spatial variability effect on the performance of a reinforced earth wall. The serviceability limit state is considered in the analysis. Both cases of isotropic and anisotropic non-normal random fields are implemented for the soil properties. The Karhunen-Loève expansion method is used for the discretization of the random field. Numerical finite difference models are considered as deterministic models. The Monte Carlo simulation technique is used to obtain the deformation response variability of the reinforced soil retaining wall. The influences of the spatial variability response of the geotechnical system in terms of horizontal facing displacement is presented and discussed. The results obtained show that the spatial variability has an important influence on the facing horizontal displacement as well as on the failure probability.

Key wordsreinforced earth wall    geosynthetic    random field    spatial variability    Monte Carlo simulation
收稿日期: 2019-02-06      出版日期: 2020-05-08
Corresponding Author(s): Adam HAMROUNI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 518-531.
Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI. Soil spatial variability impact on the behavior of a reinforced earth wall. Front. Struct. Civ. Eng., 2020, 14(2): 518-531.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0611-x
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I2/518
Fig.1  
properties (unity) fill soil foundation concrete panels reinforcement GS 50
Abdelouhab et al. [41]
E (Young’s modulus) (MPa) 50 50 15000 2500
υ (Poisson’s ratio) 0.3 0.3 0.2
j (friction angle) (°) 36
Y (dilation angle) (°) 6
C (cohesion) (kPa) 0
density (t/m3) 1.56 2 2.5
width (m) 0.1
thickness (mm) 3
strip tensile yield-force limit (kN) 100
maximum compressive strength (kPa) 0
tensile failure strain limit of strip (%) 12
Tab.1  
parameter concrete panel/soil interface soil/reinforcements interface
constitutive model Coulomb sliding Coulomb sliding
normal stiffness (MPa) 1000
shear stiffness (MPa) 1000
friction angle at panel/soil interface (°) 24
initial apparent friction coefficient at the soil/strip interface “f*0 1.2
minimum apparent friction coefficient at the soil/strip interface “f*1 0.6
shear stiffness at the soil strip interface kb (MN/m2/m) 0.22
Tab.2  
Fig.2  
parameters value
reference
variation DU/Uref (%)
min max
Young’s modulus (MPa) 50 37.5 62.5 0.49 -0.23
Poisson’s ratio 0.3 0.225 0.375 0.329 -1.83
friction angle (°) 36 27 45 122.9 -40.38
dilation angle (°) 6 4.5 7.5 0.57 -1.17
unit weight (kN/m3) 15.6 11.7 19.5 -18.97 20.05
friction angle at panel/soil interface (°) 24 18 30 1.64 -0.82
Tab.3  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
M
50 100 150 200 250
Ns μ (U) (cm) COV (U) (%) μ (U) (cm) COV (U) (%) μ (U) (cm) COV (U) (%) μ (U) (cm) COV (U) (%) μ (U) (cm) COV (U) (%)
50 7.4572 12.29 6.9660 15.47 7.7780 12.84 8.7580 14.44 9.6880 16.15
100 7.5887 12.56 6.2480 13.65 8.5020 13.10 7.1200 14.84 8.4020 14.20
200 7.6827 12.30 8.5770 14.71 6.8680 14.21 7.2020 14.27 8.7300 14.18
300 7.7630 12.68 8.7410 15.18 5.9760 14.68 8.2630 14.48 10.7700? 14.22
400 7.7478 12.88 8.7480 14.92 8.5550 14.96 10.8400? 14.80 8.4070 13.88
500 7.7528 13.03 9.4610 14.84 7.2360 14.98 8.7240 14.59 6.6880 14.04
Tab.4  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
item μ Uh?max?(c m) σ Uh?max?(c m) COV (%)
COVφ = 10% 7.5022 0.7784 10.3756
COVj = 15% 7.6901 1.1297 14.6903
COVj = 20% 7.9875 1.4617 18.2998
Tab.5  
1 D V Griffiths, G A Fenton. Bearing capacity of spatially random soil: The undrained clay Prandtl problem revisited. Geotechnique, 2001, 51(4): 351–359
https://doi.org/10.1680/geot.2001.51.4.351
2 D V Griffiths, G A Fenton, N Manoharan. Bearing capacity of rough rigid strip footing on cohesive soil: Probabilistic study. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(9): 743–755
https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743)
3 G A Fenton, D V Griffiths. Bearing capacity prediction of spatially random c-ϕ soils. Canadian Geotechnical Journal, 2003, 40(1): 54–65
https://doi.org/10.1139/t02-086
4 R Popescu, G Deodatis, A Nobahar. Effect of random heterogeneity of soil properties on bearing capacity. Probabilistic Engineering Mechanics, 2005, 20(4): 324–341
https://doi.org/10.1016/j.probengmech.2005.06.003
5 A Ahmed, A H Soubra. Extension of subset simulation approach for uncertainty propagation and global sensitivity analysis. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2012, 6(3): 162–176
https://doi.org/10.1080/17499518.2012.656296.
6 T Al-Bittar, A H Soubra. Bearing capacity of strip footing on spatially random soils using sparse polynomial chaos expansion. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 2039–2060
https://doi.org/10.1002/nag.2120
7 A Gheris , A Hamrouni. Treatment of an expansive soil using vegetable (DISS) fibre. Innovative Infrastructure Solutions, 2020, 5: 34
8 N Luo, R J Bathurst, S. Javankhoshdel Probabilistic stability analysis of simple reinforced slopes by finite element method. Computers and Geotechnics, 2016, 77: 45–55
https://doi.org/10.1016/j.compgeo.2016.04.001
9 Q Pan, D Dias. An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation. Structural Safety, 2017, 67: 85–95
https://doi.org/10.1016/j.strusafe.2017.04.006
10 Q Pan, D Dias. Sliced inverse regression-based sparse polynomial chaos expansion for reliability analysis in high dimensions. Reliability Engineering & System Safety, 2017, 167: 484–493
https://doi.org/10.1016/j.ress.2017.06.026
11 A Hamrouni, D Dias, B. Sbartai Probabilistic analysis of a piled earth platform under a concrete floor slab. Soils Found, 2017, 57(5): 828–839
12 A Hamrouni, D Dias, B. Sbartai Reliability analysis of shallow tunnels using the response surface methodology. Underground Space, 2017, 2(4): 246–258
13 Q Pan, D Dias. Probabilistic analysis of a rock tunnel face using polynomial chaos expansion method. International Journal of Geomechanics, 2018, 18(4): 04018013
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001116
14 H Kroetz, N A Do, D Dias, A T Beck. Reliability of tunnel lining design using the hyperstatic reaction method. Tunnelling and Underground Space Technology, 2018, 77: 59–67
https://doi.org/10.1016/j.tust.2018.03.028
15 X Guo, D Dias, C Carvajal, L Peyras, P Breul. Reliability analysis of embankment dam sliding stability using the sparse polynomial chaos expansion. Engineering Structures, 2018, 174: 295–307
https://doi.org/10.1016/j.engstruct.2018.07.053
16 A Hamrouni, B Sbartai, D Dias. Probabilistic analysis of ultimate seismic bearing capacity of strip foundations. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(4): 717–724
https://doi.org/10.1016/j.jrmge.2018.01.009
17 X Guo, D Dias, C Carvajal, L Peyras, P Breul. A comparative study of different reliability methods for high dimensional stochastic problems related to earth dam stability analyses. Engineering Structures, 2019, 188: 591–602
https://doi.org/10.1016/j.engstruct.2019.03.056
18 A Hamrouni, D Dias, B Sbartai. Probability analysis of shallow circular tunnels in homogeneous soil using the surface response methodology optimized by a genetic algorithm. Tunnelling and Underground Space Technology, 2019, 86: 22–33
https://doi.org/10.1016/j.tust.2019.01.008
19 F Schlosser, V. Elias Friction in Reinforced Earth. Pittsburgh: A.S.C.E. Convention, 1978, 24–28
20 A Abdelouhab, D Dias, N Freitag. Numerical analysis of the behavior of mechanically stabilized earth walls reinforced with different types of strips. Geotextiles and Geomembranes, 2011, 29(2): 116–129
https://doi.org/10.1016/j.geotexmem.2010.10.011
21 A Abdelouhab, D Dias, N Freitag. Two-dimensional numerical modeling of Reinforced Earth walls. European Journal of Environmental and Civil Engineering, 2012, 16(10): 1143–1167
https://doi.org/10.1080/19648189.2012.666908
22 M Riccio, M Ehrlich, D Dias. Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils. Geotextiles and Geomembranes, 2014, 42(2): 127–138
https://doi.org/10.1016/j.geotexmem.2014.01.006
23 B S Chun, K M Kim, D K Min. A study on reliability analysis for reinforced earth retaining walls. In: The Third Asian Geotechnical Conference on Geosynthetics. Seoul: Millpress Science Publishers, 2004, 248–254
24 S Sayed, G R Dodagoudar, K Rajagopal. Reliability analysis of reinforced soil walls under static and seismic forces. Geosynthetics International, 2008, 15(4): 246–257
https://doi.org/10.1680/gein.2008.15.4.246
25 S Sayed, G R Dodagoudar, K Rajagopal. Finite element reliability analysis of reinforced retaining walls. Geomechanics and Geoengineering, 2010, 5(3): 187–197
https://doi.org/10.1080/17486020903576788
26 Y Miyata, R J Bathurst. Reliability analysis of soil-geogrid pullout models in Japan. Soil and Foundation, 2012, 52(4): 620–633
https://doi.org/10.1016/j.sandf.2012.07.004
27 Y Miyata, R J Bathurst, T M Allen. Reliability analysis of geogrid creep data in Japan. Soil and Foundation, 2014, 54(4): 608–620
https://doi.org/10.1016/j.sandf.2014.06.004
28 Y Miyata, R J. Bathurst Reliability-based analysis of combined installation damage and creep for the tensile rupture limit state of geogrid reinforcement in Japan. Soils and Foundations, 2015, 55(2): 437–446
29 T Chalermyanont, C H Benson. Reliability-based design for internal stability of mechanically stabilized earth walls. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 163–173
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(163)
30 A H I Sia, N Dixon. Deterministic and reliability-based design: Veneer cover soil stability. Geosynthetics International, 2008, 15(1): 1–13
https://doi.org/10.1680/gein.2008.15.1.1
31 R Thurner, H F Schweiger. Reliability analysis for geotechnical problems via finite elements—A practical application. In: ISRM International Symposium. Melbourne: International Society for Rock Mechanics and Rock Engineering, 2000, 19–24
32 B H Lin, Y Yu, R J Bathurst, C N Liu. Deterministic and probabilistic prediction of facing deformations of geosynthetic-reinforced MSE walls using a response surface approach. Geotextiles and Geomembranes, 2016, 44(6): 813–823
https://doi.org/10.1016/j.geotexmem.2016.06.013
33 Y Yu, R J Bathurst. Probabilistic assessment of reinforced soil wall performance using response surface method. Geosynthetics International, 2017, 24(5): 524–542
https://doi.org/10.1680/jgein.17.00019
34 A Hamrouni, D Dias, B. Sbartai Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm. Geomechanics and Engineering, 2018, 15(4): 937–945
35 G Dodagoudar, S Sayed, K. Rajagopal Random field modeling of reinforced retaining walls. International Journal of Geotechnical Engineering, 2015, 9(3): 229–238
36 L Ning, R J Bathurst. Probabilistic analysis of reinforced slopes using RFEM and considering spatial variability of frictional soil properties due to compaction. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 2017, 12(2): 87–108
https://doi.org/10.1080/17499518.2017.1362443
37 D V Griffiths, G A Fenton. Probabilistic slope stability analysis by finite elements. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(5): 507–518
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)
38 O Gay . Physical and numerical modeling of the effect of a slow slide on foundations of structures. Dissertation for the Doctoral Degree. Grenoble: Joseph Fourier University, 2000
39 E Flavigny, J Desrues, Palayer B. Technical note: Hostun RF sand. Revue Française de Géotechnique, 1990, 53: 67–70
40 Itasca Consulting Group, Inc. FLAC2D–Fast Lagrangian Analysis of Continua in 2 Dimensions. Ver. 7, User’s Manual. Minneapolis: Itasca, 2011
41 A Abdelouhab, D Dias, N Freitag. Physical and analytical modelling of geosynthetic strip pull-out behaviour. Geotextiles and Geomembranes, 2010, 28(1): 44–53
https://doi.org/10.1016/j.geotexmem.2009.09.018
42 A Der Kiureghian, J B Ke. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 1988, 3(2): 83–91
https://doi.org/10.1016/0266-8920(88)90019-7
43 N Vu-Bac, R Rafiee, X Zhuang, T Lahmer, T Rabczuk. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
44 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
45 P D Spanos, R Ghanem. Stochastic finite element expansion for random media. Journal of Engineering Mechanics, 1989, 115(5): 1035–1053
https://doi.org/10.1061/(ASCE)0733-9399(1989)115:5(1035)
46 Y Sahraoui, A Chateauneuf. the effects of spatial variability of the aggressiveness of soil on system reliability of corroding underground pipelines. International Journal of Pressure Vessels and Piping, 2016, 146: 188–197
https://doi.org/10.1016/j.ijpvp.2016.09.004
47 S E Cho. Effect of spatial variability of soil properties on slope stability. Engineering Geology, 2007, 92(3–4): 97–109
https://doi.org/10.1016/j.enggeo.2007.03.006
48 S E Cho, H C Park. Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34: 1–26
49 R G Ghanem, P D Spanos. Stochastic Finite Elements: A Spectral Approach. New York: Springer, 1991
50 B Sudret, M Berveiller. Stochastic finite element methods in geotechnical engineering. In: Reliability-based Design in Geotechnical Engineering: Computations and Applications. Oxford: Taylor & Francis, 2008
51 M Shinozuka, G Dasgupta. Stochastic fields and their digital simulation. In: Stochastic Methods in Structural Dynamics. Boston: Martinus Nijhoff Publishers, 1987, 93–133
52 G Deodatis. Stochastic FEM sensitivity analysis of nonlinear dynamic problems. Probabilistic Engineering Mechanics, 1989, 4(3): 135–141
https://doi.org/10.1016/0266-8920(89)90019-2
53 E Vanmarcke. Probabilistic modeling of soil profiles. Journal of Geotechnical Engineering, 1977, 103: 1227–1246
54 E Vanmarcke. Random Fields: Analysis and Synthesis. Cambridge: MIT press, 1983
55 R Popescu. Stochastic variability of soil properties: Data analysis, digital simulation, effects on system behaviour. Dissertation for the Doctoral Degree. Princeton, NJ: Princeton University, 1995
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed