Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (6): 1561-1572   https://doi.org/10.1007/s11709-020-0640-5
  本期目录
Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis
Subhasis PRADHAN1, Shailendra KUMAR2, Sudhirkumar V. BARAI1,3()
1. Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
2. Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya (A Central University), Chhattisgarh 495009, India
3. Department of Civil Engineering, Birla Institute of Technology & Science, Pilani, Pilani 333031, India
 全文: PDF(676 KB)   HTML
Abstract

The physio-chemical changes in concrete mixes due to different coarse aggregate (natural coarse aggregate and recycled coarse aggregate (RCA)) and mix design methods (conventional method and Particle Packing Method (PPM)) are studied using thermogravimetric analysis of the hydrated cement paste. A method is proposed to estimate the degree of hydration ( α) from chemically bound water (WB). The PPM mix designed concrete mixes exhibit lower α. Recycled aggregate concrete (RAC) mixes exhibit higher and α after 7 d of curing, contrary to that after 28 and 90 d. The chemically bound water at infinite time ( WB) of RAC mixes are lower than the respective conventional concrete mixes. The lower W B, Ca(OH)2 bound water, free Ca(OH)2 content and FT-IR analysis substantiate the use of pozzolanic cement in the parent concrete of RCA. The compressive strength of concrete and α cannot be correlated for concrete mixes with different aggregate type and mix design method as the present study confirms that the degree of hydration is not the only parameter which governs the macro-mechanical properties of concrete. In this regard, further study on the influence of interfacial transition zone, voids content and aggregate quality on macro-mechanical properties of concrete is needed.

Key wordsrecycled aggregate concrete    Particle Packing Method    thermogravimetric analysis    chemically bound water    degree of hydration    Fourier transform infrared spectroscopy
收稿日期: 2019-04-11      出版日期: 2021-01-12
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(6): 1561-1572.
Subhasis PRADHAN, Shailendra KUMAR, Sudhirkumar V. BARAI. Understanding the behavior of recycled aggregate concrete by using thermogravimetric analysis. Front. Struct. Civ. Eng., 2020, 14(6): 1561-1572.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0640-5
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I6/1561
Fig.1  
type of concrete effective w/c ratio water
(kg/m3)
cement (kg/m3) sand (kg/m3) coarse aggregate (kg/m3)
20 mm 12.5 mm 10 mm 6.3 mm
NAC ISa) 0.45 215.85 438.13 610.19 755.77 485.63
NAC PPM b) 0.45 203.51 410.04 762.12 666.85 247.69 228.64
RAC IS c) 0.45 234.18 422.22 621.24 671.45 416.73
RAC PPM d) 0.45 225.79 410.04 702.03 560.22 240.09 200.10 52.65
Tab.1  
Fig.2  
region temperature range (oC) by different authors
Bhatty [6] Pane & Hansen [8] Monteagudo et al. [9] Deboucha et al. [10] present study
Ldh 105–440 140–440 105–430 105–400 105–420
Ldx 440–580 440–520 430–530 400–600 420–500
Ldc 580–1000 520–1100 530–1100 600–1000 500–1000
Tab.2  
Fig.3  
type of concrete curing age (d) sample number W105°C (μg) W140°C (μg) W470°C (μg) W500°C (μg) W1000°C (μg)
NAC IS 7 1 10076.059 9942.293 9493.637 9385.004 8804.532
2 11503.441 11339.184 10796.957 10660.621 10019.078
3 13758.598 13587.957 12937.777 12821.051 11912.078
28 1 12262.965 12087.848 11366.371 11280.184 10382.674
2 12538.078 12337.563 11745.563 11612.852 10549.457
3 12605.269 12423.676 11677.379 11576.285 10611.614
90 1 10867.001 10693.586 9934.063 9864.827 8638.685
2 9737.731 9576.866 8850.263 8776.079 7743.006
3 10270.589 10146.887 9510.621 9473.348 8008.677
NAC PPM 7 1 12431.477 12254.188 11757.438 11663.617 10805.313
2 10803.102 10656.445 10164.289 10095.938 9467.547
3 10746.844 10603.844 10136.438 10050.391 9372.477
28 1 10519.359 10375.453 9771.766 9719.078 9030.273
2 12264.438 12064.258 11498.508 11345.305 10535.557
3 10714.672 10518.578 9932.867 9798.570 9311.711
90 1 11962.695 11810.000 11122.227 11052.734 9574.172
2 11549.516 11371.211 10693.508 10587.578 9397.569
3 11831.585 11680.000 10991.527 10917.574 9456.328
RAC IS 7 1 11966.555 11787.125 11283.023 11165.484 10207.692
2 10793.648 10672.758 10176.179 10083.625 9225.564
3 12100.563 11893.750 11332.781 11219.789 10435.212
28 1 10763.695 10639.414 10115.281 10008.664 9106.087
2 12198.320 12155.664 11335.594 11240.383 10481.962
3 12223.719 12076.109 11335.313 11213.289 10528.777
90 1 15309.566 15133.777 14262.496 14142.089 12477.591
2 10606.589 10400.805 9677.627 9601.809 8826.999
3 10283.094 10182.461 9660.352 9600.4375 8175.665
RAC PPM 7 1 11304.043 11115.254 10606.113 10524.230 9915.390
2 11775.406 11593.063 11089.68 11019.555 10224.652
3 13902.035 13728.019 13079.269 13007.777 12115.794
28 1 11370.043 11186.184 10673.145 10529.863 9772.804
2 10040.429 9938.500 9446.367 9416.016 8450.339
3 11143.086 10956.617 10430.313 10286.453 9621.531
90 1 10828.328 10689.156 9968.898 9864.891 9133.349
2 12195.641 11998.359 11179.734 11047.063 10365.252
3 14056.754 13882.559 13117.113 12983.566 11591.556
Tab.3  
type of concrete curing age (d) sample no. Ldh (%) Ldx (%) Ldc (%) W B,Bhatty W B,Pane W B,Monteagudc
NAC IS 7 1 5.780 1.078 5.761 9.220 10.297 8.788
2 6.142 1.185 5.571 9.611 10.483 9.178
3 5.966 0.848 6.607 9.523 11.185 9.090
28 1 7.311 0.703 7.319 11.015 12.935 10.582
2 6.321 1.059 8.481 10.857 13.283 10.424
3 7.361 0.802 7.653 11.301 13.407 10.868
90 1 8.585 0.637 11.283 13.848 17.968 13.416
2 9.114 0.762 10.609 14.225 17.903 13.793
3 7.399 0.363 14.261 13.609 19.839 13.177
NAC PPM 7 1 5.422 0.755 6.904 9.008 11.222 8.575
2 5.913 0.633 5.817 8.931 10.013 8.498
3 5.680 0.801 6.308 9.067 10.462 8.634
28 1 7.107 0.501 6.548 10.292 11.812 9.859
2 6.245 1.249 6.602 10.201 11.486 9.769
3 7.297 1.253 4.544 10.413 10.311 9.980
90 1 7.026 0.581 12.359 12.674 17.709 12.242
2 7.412 0.917 10.304 12.553 16.126 12.121
3 7.100 0.625 12.350 12.789 17.815 12.356
RAC IS 7 1 5.712 0.982 8.004 9.976 12.208 9.543
2 5.721 0.858 7.949 9.838 12.405 9.405
3 6.345 0.934 6.484 9.937 11.079 9.505
28 1 6.024 0.991 8.385 10.453 13.247 10.020
2 7.073 0.781 6.217 10.402 12.689 9.969
3 7.268 0.998 5.599 10.562 11.678 10.129
90 1 6.839 0.787 10.872 12.083 16.361 11.651
2 8.758 0.715 7.305 12.468 13.918 12.036
3 6.056 0.583 13.856 12.319 18.511 11.887
RAC PPM 7 1 6.174 0.724 5.386 9.107 9.636 8.674
2 5.823 0.596 6.751 9.187 10.633 8.754
3 5.918 0.514 6.416 9.063 10.601 8.631
28 1 6.129 1.260 6.658 10.119 11.449 9.687
2 5.917 0.302 9.618 10.162 13.817 9.729
3 6.397 1.291 5.967 10.134 11.007 9.702
90 1 7.937 0.961 6.756 11.667 13.484 11.235
2 8.330 1.088 5.591 11.710 12.362 11.278
3 6.685 0.950 9.903 11.695 15.312 11.262
Tab.4  
type of concrete Pane and Hansen method [8] Monteagudo et al. method [9] present method
WB τ α WB K WB τ α
NAC IS 0.2372 93.93 0.3721 0.1325 89.10 0.2384 163.50 0.1975
NAC PPM 0.2341 109.80? 0.3393 0.1200 75.45 0.2337 196.90 0.1677
RAC IS 0.2282 34.86 0.2627 0.1147 39.55 0.2187 ?43.67 0.1155
RAC PPM 0.2244 42.93 0.1792 0.1107 50.12 0.2162 ?90.33 0.1283
Tab.5  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
type of concrete curing age (d) CH bound water free CH free CHMonteagudo et al.
NAC IS ?7 3.056 14.308 12.536
28 3.627 16.645 14.873
90 5.096 22.659 20.887
NAC PPM ?7 2.897 13.654 11.882
28 2.987 14.023 12.251
90 5.060 22.516 20.744
RAC IS ?7 3.558 16.365 14.592
28 3.252 15.107 13.335
90 4.640 20.793 19.021
RAC PPM ?7 2.714 12.902 11.130
28 3.559 16.366 14.593
90 3.608 16.567 14.795
Tab.6  
Fig.8  
Fig.9  
1 M Chakradhara Rao, S K Bhattacharyya, S V Barai. Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 2011, 44(1): 205–220
https://doi.org/10.1617/s11527-010-9620-x
2 B B Mukharjee, S V Barai. Influence of Nano-Silica on the properties of recycled aggregate concrete. Construction & Building Materials, 2014, 55: 29–37
https://doi.org/10.1016/j.conbuildmat.2014.01.003
3 G Fathifazl, A Abbas, A G Razaqpur, O B Isgor, B Fournier, S Foo. New mixture proportioning method for concrete made with coarse recycled concrete aggregate. Journal of Materials in Civil Engineering, 2009, 21(10): 601–611
https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(601)
4 A M Knaack, Y C Kurama. Design of concrete mixtures with recycled concrete aggregates. ACI Materials Journal, 2013, 110: 483–492
5 M Pepe, R D Toledo Filho, E A B Koenders, E Martinelli. A novel mix design methodology for Recycled Aggregate Concrete. Construction & Building Materials, 2016, 122: 362–372
https://doi.org/10.1016/j.conbuildmat.2016.06.061
6 J I Bhatty. Hydration versus strength in a Portland cement developed from domestic mineral wastes—A comparative study. Thermochimica Acta, 1986, 106: 93–103
https://doi.org/10.1016/0040-6031(86)85120-6
7 J I Bhatty. A review of the application of thermal analysis to cement-admixture systems. Thermochimica Acta, 1991, 189(2): 313–350
https://doi.org/10.1016/0040-6031(91)87128-J
8 I Pane, W Hansen. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research, 2005, 35(6): 1155–1164
https://doi.org/10.1016/j.cemconres.2004.10.027
9 S M Monteagudo, A Moragues, J C Gαlvez, M J Casati, E Reyes. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochimica Acta, 2014, 592: 37–51
https://doi.org/10.1016/j.tca.2014.08.008
10 W Deboucha, N Leklou, A Khelidj, M N Oudjit. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Construction & Building Materials, 2017, 146: 687–701
https://doi.org/10.1016/j.conbuildmat.2017.04.132
11 Q Zeng, K Li, T Fen-Chong, P Dangla. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Construction & Building Materials, 2012, 27(1): 560–569
https://doi.org/10.1016/j.conbuildmat.2011.07.007
12 G Ye, X Liu, G De Schutter, A M Poppe, L Taerwe. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 2007, 29(2): 94–102
https://doi.org/10.1016/j.cemconcomp.2006.09.003
13 R Vedalakshmi, A Sundara Raj, S Srinivasan, K Ganesh Babu. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochimica Acta, 2003, 407(1–2): 49–60
https://doi.org/10.1016/S0040-6031(03)00286-7
14 T Hemalatha, M Mapa, N George, S Sasmal. Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement. Journal of Cleaner Production, 2016, 125: 268–281
https://doi.org/10.1016/j.jclepro.2016.03.118
15 V W Y Tam, X F Gao, C M Tam, K M Ng. Physio-chemical reactions in recycle aggregate concrete. Journal of Hazardous Materials, 2009, 163(2–3): 823–828
https://doi.org/10.1016/j.jhazmat.2008.07.031
16 IS 10262-2009. Concrete Mix Proportioning—Guidelines. New Delhi: Bureau of Indian Standards, 2009
17 S Pradhan, S Kumar, S V Barai. Recycled aggregate concrete: particle packing method (PPM) of mix design approach. Construction & Building Materials, 2017, 152: 269–284
https://doi.org/10.1016/j.conbuildmat.2017.06.171
18 V W Y Tam, X F Gao, C M Tam. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cement and Concrete Research, 2005, 35(6): 1195–1203
https://doi.org/10.1016/j.cemconres.2004.10.025
19 IS 383-1970. Specification for Coarse and Fine Aggregate from Natural Sources. New Delhi: Bureau of Indian Standards, 1970
20 IS 12269-2013. Ordanary Portland Cement 53 Grade-Specification. New Delhi: Bureau of Indian Standards, 2013
21 J Zhang, G W Scherer. Comparison of methods for arresting hydration of cement. Cement and Concrete Research, 2011, 41(10): 1024–1036
https://doi.org/10.1016/j.cemconres.2011.06.003
22 K L Scrivener, B Lothenbach, N De Belie, E Gruyaert, J Skibsted, R Snellings, A Vollpracht. TC 238-SCM: Hydration and microstructure of concrete with SCMs. Materials and Structures, 2015, 48(4): 835–862
https://doi.org/10.1617/s11527-015-0527-4
23 L E Copeland, D L Kantro, G Verbeck. Chemistry of hydration of Portland cement. In: The 4th International Symposium on the Chemistry of Cement. Washington, D.C., 1960, I: 429–465
24 J F Young, W Hansen. Volume Relationships for C-S-H Formation Based on Hydration Stoichiometries. In: MRS Online Proceedings Library Archive. 1986, 85: 313
https://doi.org/10.1557/PROC-85-313.
25 P Lura, F Winnefeld, X Fang. A simple method for determining the total amount of physically and chemically bound water of different cements. Journal of Thermal Analysis and Calorimetry, 2017, 130(2): 653–660
https://doi.org/10.1007/s10973-017-6513-z
26 B El-Jazairi, J M Illston. The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry. Cement and Concrete Research, 1980, 10(3): 361–366
https://doi.org/10.1016/0008-8846(80)90111-8
27 A Mendes, W P Gates, J G Sanjayan, F Collins. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Materials and Structures, 2011, 44(10): 1773–1791
https://doi.org/10.1617/s11527-011-9737-6
28 Z Y Pan, G Li, C Y Hong, H L Kuang, Y Yu, F X Feng, D M Liu, H Du. Modified recycled concrete aggregates for asphalt mixture using microbial calcite precipitation. Royal Society of Chemistry Advances, 2015, 5(44): 34854–34863
https://doi.org/10.1039/C5RA04203H
29 P A Bhat, N C Debnath. Theoretical and experimental study of structures and properties of cement paste: The nanostructural aspects of C-S-H. Journal of Physics and Chemistry of Solids, 2011, 72(8): 920–933
https://doi.org/10.1016/j.jpcs.2011.05.001
30 M Y A Mollah, W Yu, R Schennach, D L Cocke. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cement and Concrete Research, 2000, 30(2): 267–273
https://doi.org/10.1016/S0008-8846(99)00243-4
31 A Peyvandi, D Holmes, P Soroushian, A M Balachandra. Monitoring of sulfate attack in concrete by Al 27 and Si 29 MAS NMR spectroscopy. Journal of Materials in Civil Engineering, 2015, 27(8): 04014226
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001175
32 R Ylmén, U Jäglid, B Steenari, I Panas. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cement and Concrete Research, 2009, 39(5): 433–439
https://doi.org/10.1016/j.cemconres.2009.01.017
33 M A Trezza, A E Lavat. Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT-IR spectroscopy. Cement and Concrete Research, 2001, 31(6): 869–872
https://doi.org/10.1016/S0008-8846(01)00502-6
34 A H Delgado, R M Paroli, J J Beaudoin. Comparison of IR techniques for the characterization of construction cement minerals and hydrated products. Applied Spectroscopy, 1996, 50(8): 970–976
https://doi.org/10.1366/0003702963905312
35 S Nasrazadani, R Eghtesad, E Sudoi, S Vupputuri, J D Ramsey, M T Ley. Application of Fourier transform infrared spectroscopy to study concrete degradation induced by biogenic sulfuric acid. Materials and Structures, 2016, 49(5): 2025–2034
https://doi.org/10.1617/s11527-015-0631-5
36 T L Hughes, C M Methven, T G J Jones, S E Pelham, P Fletcher, C Hall. Determining cement composition by Fourier transform infrared spectroscopy. Advanced Cement Based Materials, 1995, 2(3): 91–104
https://doi.org/10.1016/1065-7355(94)00031-X
37 P Yu, R J Kirkpatrick, B Poe, P F McMillan, X Cong. Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 1999, 82(3): 742–748
https://doi.org/10.1111/j.1151-2916.1999.tb01826.x
38 A Hidalgo López, J L García Calvo, J García Olmo, S Petit, M C Alonso. Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy. Journal of the American Ceramic Society, 2008, 91(4): 1258–1265
https://doi.org/10.1111/j.1551-2916.2008.02283.x
39 H K Choudhary, A V Anupama, R Kumar, M E Panzi, S Matteppanavar, B N Sherikar, B Sahoo. Observation of phase transformations in cement during hydration. Construction & Building Materials, 2015, 101: 122–129
https://doi.org/10.1016/j.conbuildmat.2015.10.027
40 A Govin, A Peschard, R Guyonnet. Modification of cement hydration at early ages by natural and heated wood. Cement and Concrete Composites, 2006, 28(1): 12–20
https://doi.org/10.1016/j.cemconcomp.2005.09.002
41 Z Zhang, H Wang, J L Provis. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR. Journal of Sustainable Cement-Based Materials, 2012, 1(4): 154–166
https://doi.org/10.1080/21650373.2012.752620
42 X Guo, H Shi, W A Dick. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and Concrete Composites, 2010, 32(2): 142–147
https://doi.org/10.1016/j.cemconcomp.2009.11.003
43 P Chindaprasirt, C Jaturapitakkul, W Chalee, U Rattanasak. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management, 2009, 29(2): 539–543
https://doi.org/10.1016/j.wasman.2008.06.023
44 P Rożek, M Król, W Mozgawa. Spectroscopic studies of fly ash-based geopolymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 198: 283–289
https://doi.org/10.1016/j.saa.2018.03.034
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed