Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (5): 1110-1130   https://doi.org/10.1007/s11709-020-0643-2
  本期目录
Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames
Mohammad Sadegh ES-HAGHI1, Aydin SHISHEGARAN2, Timon RABCZUK3,4()
1. School of Civil Engineering, Khajeh Nasir Toosi University of Technology, Tehran 19697-64499, Iran
2. School of Civil Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran
3. Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
 全文: PDF(4703 KB)   HTML
Abstract

We propose a new algorithm, named Asymmetric Genetic Algorithm (AGA), for solving optimization problems of steel frames. The AGA consists of a developed penalty function, which helps to find the best generation of the population. The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction (AISC). Design variables are the cross-sectional areas of elements (beams and columns) that are selected from the sets of side-flange shape steel sections provided by the AISC. The finite element method (FEM) is utilized for analyzing the behavior of steel frames. A 15-storey three-bay steel planar frame is optimized by AGA in this study, which was previously optimized by algorithms such as Particle Swarm Optimization (PSO), Particle Swarm Optimizer with Passive Congregation (PSOPC), Particle Swarm Ant Colony Optimization (HPSACO), Imperialist Competitive Algorithm (ICA), and Charged System Search (CSS). The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms. AGA performs better in comparison to these algorithms with respect to total weight and number of analyses. In addition, five numerical examples are optimized by AGA, Genetic Algorithm (GA), and optimization modules of SAP2000, and the results of them are compared. The results show that AGA can decrease the time of analyses, the number of analyses, and the total weight of the structure. AGA decreases the total weight of regular and irregular steel frame about 11.1% and 26.4% in comparing with the optimized results of SAP2000, respectively.

Key wordsoptimization    steel frame    Asymmetric Genetic Algorithm    constraints of ultimate load    constraints of serviceability limits    penalty function
收稿日期: 2019-07-01      出版日期: 2020-11-16
Corresponding Author(s): Timon RABCZUK   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(5): 1110-1130.
Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0643-2
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I5/1110
Fig.1  
kind of loads somewhere load is applied amount (kgf/m2)
dead load on roof 345
on storey of building expect roof 300
peripheral wall 530
the peripheral wall on the roof 250
live load the internal wall on storey 115
on roof 150
on storey 200
static lateral loads applied C = ABI/Ra)
Tab.1  
Fig.2  
?item GA AGA
column 4BO×220×10
14BO×200×10
2BO×200×12
2BO×250×10
1BO×220×12
5BO×220×101
BO×200×12
11BO×200×10
beam 4IPE100
12IPE120
4IPE140
2IPE100
13IPE120
5IPE140
number of cross-section 6 8
total weight of the frame 5175.1 5361.6
weight of frames per area 64.68 67.02
number of structural analyses 32152 401
time (second)? 260288 3057
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
?item AGA SAP2000
cross-sections 47W14×38
11W12×87
100W12×40
24W10×100
39W10×39
21W10×15
142W8×48
62W8×21
47W8×15
14W8×13
33W30×148
12W27×146
27W24×146
14W24×94
38W21×122
40W21×73
39W18×106
76W18×55
42W16×57
8W14×159
28W14×74
201W14×38
10W12×210
51W12×87
8W10×100
12W10×39
1W10×15
20W8×48
35W8×21
4W8×15
8W8×13
5W33×201
8W30×292
10W27×146
52W24×146
39W21×122
24W21×73
4W18×106
287W18×55
59W14×159
29W14×74
number of selective cross section 21 20
total weight of the structure (kg) 300110 339540
weight per area (kg/m2) 66.69 75.45
number of structural analyses 6117
number of weight calculations 130200
Tab.3  
Fig.7  
Fig.8  
Fig.9  
item AGA SAP2000
cross-sections 116W16×57
28W14×159
55W14×74
18W14×38
24W12×210
79W12×87
58W12×40
23W10×100
66W10×39
35W8×48
1W8×21
5W36×232
15W33×201
42W30×148
52W27×146
27W24×146
43W24×94
12W21×122
116W21×73
3W18×234
8W18×106
47W18×55
16W14×74
170W14×38
8W12×87
1W12×40
5W10×100
9W10×39
18W8×48
9W8×21
13W14×159
46W30×292
6W27×307
1W27×146
10W24×146
13W21×122
42W21×73
318W18×55
92W14×455
96W14×342
number of selective cross section 22 16
total weight of the frame (kg) 414843 521396
weight per area (kg/m2) 96.03 120.69
number of structural analyses 6918
number of weight calculations 162750
Tab.4  
Fig.10  
Fig.11  
Fig.12  
?item AGA SAP2000
cross sections 36W14×74
158W14×38
44W12×87
4W12×40
8W10×100
8W10×39
8W8×48
8W8×21
24W33×201
4W27×146
60W24×146
5W24×94
44W21×122
83W21×73
4W18×106
306W18×55
60W14×159
23W16×57
8W14×455
23W14×342
3W14×159
6W14×74
44W14×38
13W12×210
5W12×87
129W12×40
7W10×100
36W10×39
21W10×15
96W8×48
60W8×21
64W8×15
20W8×13
40W36×361
16W36×232
33W33×387
5W33×201
19W30×292
4W30×148
37W27×307
3W27×146
30W24×306
5W24×146
4W24×94
3W21×122
15W21×73
16W18×234
5W18×106
71W18×55
number of selective cross section 17 32
total weight of the frame (kg) 381313 498631
weight per area (kg/m2) 84.74 110.8
number of structural analyses 8873
number of weight calculations 130200
Tab.5  
Fig.13  
Fig.14  
Fig.15  
?item AGA SAP2000
cross sections 38 W14×74
172 W14×38
48 W12×87
1 W12×40
10 W10×100
9 W10×39
18 W8×48
10 W8×21
13 W33×201
6 W27×146
53 W24×146
54 W21×122
85 W21×73
1 W18×106
290 W18×55
65 W14×159
60 W10×39
55 W10×15
10 W8×48
71 W8×21
18 W8×15
396 W8×13
56 W30×292
10 W27×307
100 W14×455
74 W14×342
14 W12×87
number of selective cross section 16 11
total weight of the frame (kg) 376807 511811
weight per area (kg/m2) 87.22 118.47
number of structural analyses 6215
number of weight calculations 162750
Tab.6  
Fig.16  
Fig.17  
Fig.18  
element group optimal W-shaped sections
PSO [51] PSOPC [51] HPSACO [51] ICA [52] CSS [53] AGA
1 W33×118 W27×129 W21×111 W24×117 W21×147 W24×117
2 W33×263 W24×131 W18×158 W21×147 W18×143 W18×143
3 W24×76 W24×103 W10×88 W27×84 W12×87 W24×103
4 W36×256 W33×141 W30×116 W27×114 W30×108 W30×108
5 W21×73 W24×104 W21×83 W14×74 W18×76 W14×74
6 W18×86 W10×88 W24×103 W18×86 W24×103 W24×103
7 W18×65 W14×74 W21×55 W12×96 W21×68 W21×68
8 W21×68 W27×94 W27×114 W24×68 W14×61 W14×61
9 W18×60 W21×57 W10×33 W10×39 W18×35 W18×35
10 W18×65 W18×71 W18×46 W12×40 W10×33 W10×33
11 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44
weight (kN) 496.68 452.34 426.36 417.466 412.62 408.31
number of analyses 5000 5000 6800 6000 5000 4287
Tab.7  
Fig.19  
1 L A Le, T Bui-Vinh, V Ho-Huu, T Nguyen-Thoi. An efficient coupled numerical method for reliability-based design optimization of steel frames. Journal of Constructional Steel Research, 2017, 138: 389–400
https://doi.org/10.1016/j.jcsr.2017.08.002
2 S Pezeshk, C V Camp, D Chen. Design of nonlinear framed structures using genetic optimization. Journal of Structural Engineering, 2000, 126(3): 382–388
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
3 C V Camp, B J Bichon, S P Stovall. Design of steel frames using ant colony optimization. Journal of Structural Engineering, 2005, 131(3): 369–379
https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
4 O Hasançebi, S Carbas. Bat inspired algorithm for discrete size optimization of steel frames. Advances in Engineering Software, 2014, 67: 173–185
https://doi.org/10.1016/j.advengsoft.2013.10.003
5 S O Degertekin. Optimum design of steel frames using harmony search algorithm. Structural and Multidisciplinary Optimization, 2008, 36(4): 393–401
https://doi.org/10.1007/s00158-007-0177-4
6 M P Saka. Optimum design of steel sway frames to BS5950 using harmony search algorithm. Journal of Constructional Steel Research, 2009, 65(1): 36–43
https://doi.org/10.1016/j.jcsr.2008.02.005
7 P Murren, K Khandelwal. Design-driven harmony search (DDHS) in steel frame optimization. Engineering Structures, 2014, 59: 798–808
https://doi.org/10.1016/j.engstruct.2013.12.003
8 A Kaveh, S Talatahari. An improved ant colony optimization for the design of planar steel frames. Engineering Structures, 2010, 32(3): 864–873
https://doi.org/10.1016/j.engstruct.2009.12.012
9 İ Aydoğdu, M P Saka. Ant colony optimization of irregular steel frames including elemental warping effect. Advances in Engineering Software, 2012, 44(1): 150–169
https://doi.org/10.1016/j.advengsoft.2011.05.029
10 O Hasançebi, S Kazemzadeh Azad. An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Computers & Structures, 2012, 110: 167–179
https://doi.org/10.1016/j.compstruc.2012.07.014
11 A Kaveh, H. Abbasgholiha Optimum design of steel sway frames using big bang-big crunch algorithm. Asian Journal of Civil Engineering, 2011, 12(3): 293–317
12 ANSI/AISC 360-10. Specification for Structural Steel Buildings. American National Standard, 2010, 1–612
13 J B Cardoso, J R de Almeida, J M Dias, P G Coelho. Structural reliability analysis using Monte Carlo simulation and neural networks. Advances in Engineering Software, 2008, 39(6): 505–513
https://doi.org/10.1016/j.advengsoft.2007.03.015
14 M Papadrakakis, Y Tsompanakis, N D Lagaros, M Friagiadakis. Reliability based optimization of steel frames under seismic loading conditions using evolutionary computation. Journal of Theoretical and Applied Mechanics, 2004, 42: 585–608
15 M R Ghasemi, M. Yousefi Reliability-based optimization of steel frame structures using modified genetic algorithm. Asian Journal of Civil Engineering, 2011, 12(4): 449–475
16 M Shayanfar, R Abbasnia, A Khodam. Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl. Finite Elements in Analysis and Design, 2014, 90: 61–73
https://doi.org/10.1016/j.finel.2014.06.010
17 F Li, T Wu, A Badiru, M Hu, S Soni. A single-loop deterministic method for reliability-based design optimization. Engineering Optimization, 2013, 45(4): 435–458
https://doi.org/10.1080/0305215X.2012.685071
18 J Tu, K K Choi, Y H Park. A new study on reliability-based design optimization. Journal of Mechanical Design, 1999, 121(4): 557–564
https://doi.org/10.1115/1.2829499
19 R V Grandhi, L. Wang Reliability-based structural optimization using improved two-point adaptive nonlinear approximations. Finite Elements in Analysis and Design, 1998, 29(1): 35–48
20 Y T Wu. Computational methods for efficient structural reliability and reliability sensitivity analysis. AIAA Journal, 1994, 32(8): 1717–1723
https://doi.org/10.2514/3.12164
21 Y Wu, K Kakushima, P Ahmet, A Nishiyama. An innovative framework for reliability-based MDO. In: The 41st Structures, Structural Dynnamics, Materials Conference and Exhibit. Atlanta, GA: American Institute of Aeronautics and Astronautics, 2000,100–108
22 Y T Wu, Y Shin, R Sues, M Cesare. Safety-factor based approach for probability-based design optimization. In: The 19th AIAA Applied Aerodynamics Conference. Anaheim, CA: AIAA, 2001
23 X Du, W Chen. Sequential optimization and reliability assessment method for efficient probabilistic design. In: ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference American Society of Mechanical Engineers. Montreal, 2002, 871–880
24 R Storn, K Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11(4): 341–359
https://doi.org/10.1023/A:1008202821328
25 V Ho-Huu, T Nguyen-Thoi, L Le-Anh, T Nguyen-Trang. An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures. Advances in Engineering Software, 2016, 92: 48–56
https://doi.org/10.1016/j.advengsoft.2015.11.001
26 V Ho-Huu, T Nguyen-Thoi, T Vo-Duy, T Nguyen-Trang. An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Computers & Structures, 2016, 165: 59–75
https://doi.org/10.1016/j.compstruc.2015.11.014
27 V Ho-Huu, T Vo-Duy, T Luu-Van, L Le-Anh, T Nguyen-Thoi. Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme. Automation in Construction, 2016, 68: 81–94
https://doi.org/10.1016/j.autcon.2016.05.004
28 Z Wang, H Tang, P Li. Optimum design of truss structures based on differential evolution strategy. In: 2009 International Conference on Information Engineering and Computer Science. Los Angeles: IEEE, 2009,1–5
29 V Ho-Huu, T D Do-Thi, H Dang-Trung, T Vo-Duy, T Nguyen-Thoi. Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method. Composite Structures, 2016, 146: 132–147
https://doi.org/10.1016/j.compstruct.2016.03.016
30 L Le-Anh, T Nguyen-Thoi, V Ho-Huu, H Dang-Trung, T Bui-Xuan. Static and frequency optimization of folded laminated composite plates using an adjusted differential evolution algorithm and a smoothed triangular plate element. Composite Structures, 2015, 127: 382–394
https://doi.org/10.1016/j.compstruct.2015.02.069
31 T Vo-Duy, V Ho-Huu, H Dang-Trung, T Nguyen-Thoi. A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm. Composite Structures, 2016, 147: 42–53
https://doi.org/10.1016/j.compstruct.2016.03.027
32 T Vo-Duy, V Ho-Huu, H Dang-Trung, D Dinh-Cong, T Nguyen-Thoi. Damage detection in laminated composite plates using modal strain energy and improved differential evolution algorithm. Procedia Engineering, 2016, 142: 182–189
https://doi.org/10.1016/j.proeng.2016.02.030
33 D Dinh-Cong, T Vo-Duy, V Ho-Huu, H Dang-Trung, T Nguyen-Thoi. An efficient multi-stage optimization approach for damage detection in plate structures. Advances in Engineering Software, 2017, 112: 76–87
https://doi.org/10.1016/j.advengsoft.2017.06.015
34 D Dinh-Cong, T Vo-Duy, N Nguyen-Minh, V Ho-Huu, T Nguyen-Thoi. A two-stage assessment method using damage locating vector method and differential evolution algorithm for damage identification of cross-ply laminated composite beams. Advances in Structural Engineering, 2017, 20(12): 1807–1827
https://doi.org/10.1177/1369433217695620
35 J Ilonen, J K Kamarainen, J Lampinen. Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters, 2003, 17(1): 93–105
https://doi.org/10.1023/A:1022995128597
36 G Xu, M Li, B Mourrain, T Rabczuk, J Xu, S P Bordas. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 175–200
https://doi.org/10.1016/j.cma.2017.08.052
37 H Ghasemi, P Kerfriden, S P Bordas, J Muthu, G Zi, T Rabczuk. Interfacial shear stress optimization in sandwich beams with polymeric core using non-uniform distribution of reinforcing ingredients. Composite Structures, 2015, 120: 221–230
https://doi.org/10.1016/j.compstruct.2014.10.005
38 H Ghasemi, H S Park, T Rabczuk. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
39 H Ghasemi, R Brighenti, X Zhuang, J Muthu, T Rabczuk. Optimal fiber content and distribution in fiber-reinforced solids using a reliability and NURBS based sequential optimization approach. Structural and Multidisciplinary Optimization, 2015, 51(1): 99–112
https://doi.org/10.1007/s00158-014-1114-y
40 H Ghasemi, P Kerfriden, S P Bordas, J Muthu, G Zi, T Rabczuk. Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Composites. Part B, Engineering, 2015, 81: 107–119
https://doi.org/10.1016/j.compositesb.2015.06.023
41 S S Nanthakumar, X Zhuang, H S Park, T Rabczuk. Topology optimization of flexoelectric structures. Journal of the Mechanics and Physics of Solids, 2017, 105: 217–234
https://doi.org/10.1016/j.jmps.2017.05.010
42 H Ghasemi, R Rafiee, X Zhuang, J Muthu, T Rabczuk. Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 2014, 85: 295–305
https://doi.org/10.1016/j.commatsci.2014.01.020
43 S S Nanthakumar, N Valizadeh, H S Park, T Rabczuk. Surface effects on shape and topology optimization of nanostructures. Computational Mechanics, 2015, 56(1): 97–112
https://doi.org/10.1007/s00466-015-1159-9
44 H Ghasemi, R Brighenti, X Zhuang, J Muthu, T Rabczuk. Optimization of fiber distribution in fiber reinforced composite by using NURBS functions. Computational Materials Science, 2014, 83: 463–473
https://doi.org/10.1016/j.commatsci.2013.11.032
45 V Ho-Huu, T Nguyen-Thoi, T Truong-Khac, L Le-Anh, T Vo-Duy. An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Computing & Applications, 2018, 29(1): 167–185
https://doi.org/10.1007/s00521-016-2426-1
46 J. Holland Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and artificial Intelligence. Ann Arbor: University of Michigan Press, 1975
47 D E Goldberg, J H Holland. Genetic algorithms and machine learning. Machine Learning, 1988, 3(2): 95–99
https://doi.org/10.1023/A:1022602019183
48 N Bel Hadj Ali, M Sellami, A F Cutting-Decelle, J C Mangin. Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms. Engineering Structures, 2009, 31(11): 2766–2778
https://doi.org/10.1016/j.engstruct.2009.07.004
49 J Akbari, M S Ayubirad. Seismic optimum design of steel structures using gradient-based and genetic algorithm methods. International Journal of Civil Engineering, 2017, 15(2): 135–148
https://doi.org/10.1007/s40999-016-0088-0
50 J S Arora. Introduction to Optimum Design. Lowa: Elsevier, 2004
51 S Gholizadeh, O A Samavati. Structural optimization by wavelet transforms and neural networks. Applied Mathematical Modelling, 2011, 35(2): 915–929
https://doi.org/10.1016/j.apm.2010.07.046
52 A Kaveh, S Talatahari. Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization. Studies in Computational Intelligence, 2009, 239: 159–198
https://doi.org/10.1007/978-3-642-03450-3_5
53 A Kaveh, S Talatahari. Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures, 2010, 88(21-22): 1220–1229
https://doi.org/10.1016/j.compstruc.2010.06.011
54 A Kaveh, S Talatahari. Charged system search for optimal design of frame structures. Applied Soft Computing, 2012, 12(1): 382–393
https://doi.org/10.1016/j.asoc.2011.08.034
55 S Zhou, T Rabczuk, X Zhuang. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, 122: 31–49
https://doi.org/10.1016/j.advengsoft.2018.03.012
56 S Zhou, X Zhuang, T Rabczuk. Phase-field modeling of fluid-driven dynamic cracking in porous media. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 169–198
https://doi.org/10.1016/j.cma.2019.03.001
57 S Zhou, X Zhuang, T Rabczuk. A phase-field modeling approach of fracture propagation in poroelastic media. Engineering Geology, 2018, 240: 189–203
https://doi.org/10.1016/j.enggeo.2018.04.008
58 S Zhou, X Zhuang, H Zhu, T Rabczuk. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96: 174–192
https://doi.org/10.1016/j.tafmec.2018.04.011
59 S Zhou, X Zhuang, T Rabczuk. Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 729–752
https://doi.org/10.1016/j.cma.2019.06.021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed