Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (6): 1418-1444   https://doi.org/10.1007/s11709-020-0664-x
  本期目录
A novel ensemble model for predicting the performance of a novel vertical slot fishway
Aydin SHISHEGARAN1(), Mohammad SHOKROLLAHI2, Ali MIRNOROLLAHI2, Arshia SHISHEGARAN3, Mohammadreza MOHAMMAD KHANI4
1. Department of Water and Environmental Engineering, School of Civil Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
2. Department of Water and Environmental Engineering, School of Civil Engineering, Semnan University, Semnan 35131-19111, Iran
3. Department of Water and Environmental Engineering, School of Civil Engineering, Islamic Azad University Central Tehran Branch, Tehran 1987745815, Iran
4. School of Progress Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
 全文: PDF(6162 KB)   HTML
Abstract

We investigate the performance of a novel vertical slot fishway by employing finite volume and surrogate models. Multiple linear regression, multiple log equation regression, gene expression programming, and combinations of these models are employed to predict the maximum turbulence, maximum velocity, resting area, and water depth of the middle pool in the fishway. The statistical parameters and error terms, including the coefficient of determination, root mean square error, normalized square error, maximum positive and negative errors, and mean absolute percentage error were employed to evaluate and compare the accuracy of the models. We also conducted a parametric study. The independent variables include the opening between baffles (OBB), the ratio of the length of the large and small baffles, the volume flow rate, and the angle of the large baffle. The results show that the key parameters of the maximum turbulence and velocity are the volume flow rate and OBB.

Key wordsnovel vertical slot fishway    parametric study    finite volume method    ensemble model    gene expression programming
收稿日期: 2019-11-21      出版日期: 2021-01-12
Corresponding Author(s): Aydin SHISHEGARAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(6): 1418-1444.
Aydin SHISHEGARAN, Mohammad SHOKROLLAHI, Ali MIRNOROLLAHI, Arshia SHISHEGARAN, Mohammadreza MOHAMMAD KHANI. A novel ensemble model for predicting the performance of a novel vertical slot fishway. Front. Struct. Civ. Eng., 2020, 14(6): 1418-1444.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0664-x
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I6/1418
Fig.1  
Fig.2  
mechanical and thermal property symbol unit value
density ρ kg/m3 1000
temperature T °C 20
dynamic viscosity μ N·s/m2 0.001
kinematic viscosity ν m2/s 1 × 10−6
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
symbol variable unit levels
L1 length of the large baffle m 1.65, 1.55, 1.45
L2 length of the small baffle m 0.3, 0.4, 0.5
θ ALB ° 0, 9, 18
W0 distance between large and small baffles m 0.3, 0.45, 0.6
Q volume flow rate (inlet) L/s 1000, 800, 400
Tab.2  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
outputs volume flow rate, Q length of large baffle, L1 length of small baffle, L2 angel of the large baffle, ALB opening between baffles, OBB
rest area, RA –0.009? –0.239? ?0.239 0.065 ?0.338
the maximum turbulence, Tmax 0.348 0.114 –0.114 0.328 –0.773
water depth, H 0.983 0.036 –0.036 0.017 –0.160
the maximum velocity, Vmax 0.536 –0.018? ?0.018 0.292 –0.696
Tab.3  
Fig.18  
Fig.19  
models calibration data set (70%) validation data set (30%)
coefficient of determination RMSE NMSE coefficient of determination RMSE NMSE
MLR 0.812 0.009 0.129 0.843 0.008 0.115
MLER 0.775 0.010 0.133 0.857 0.007 0.126
GEP 0.808 0.009 0.130 0.903 0.006 0.089
ensemble model 0.828 0.009 0.121 0.886 0.006 0.097
Tab.4  
error terms models
MLR MLER GEP ensemble model
maximum positive error 25.9% 31.5% 31.3% 27.3%
maximum negative error −25.9% −23.0% −21.6% −23.3%
MAPE 9.3% 9.6% 7.7% 8.3%
Tab.5  
Fig.20  
models calibration data set (70%) validation data set (30%)
coefficient of determination RMSE NMSE coefficient of determination RMSE NMSE
MLR 0.791 0.081 0.145 0.896 0.051 0.107
MLER 0.754 0.088 0.159 0.864 0.047 0.113
GEP 0.858 0.067 0.120 0.872 0.044 0.122
ensemble model 0.862 0.066 0.110 0.878 0.043 0.119
Tab.6  
error terms models
MLR MLER GEP ensemble model
maximum positive error 11.1% 12.9% 7.7% 7.1%
maximum negative error −17.0% −12.0% −20.0% −18.9%
MAPE 4.0% 4.2% 3.0% 3.2%
Tab.7  
Fig.21  
models the statistical parameters error terms
calibration data set validation data set the maximum positive error the maximum negative error MAPE
RMSE NMSE RMSE NMSE
MLR 2.758 0.606 2.211 0.543 13.0% –12.0% 4.6%
MLER 2.741 0.601 2.184 0.522 12.4% –11.8% 4.6%
GEP 2.128 0.245 1.888 0.410 12.6% –10.6% 3.1%
ensemble model 1.940 0.182 1.818 0.326 11.4% –11.5% 3.2%
Tab.8  
Fig.22  
models calibration data set (70%) validation data set (30%)
coefficient of determination RMSE NMSE coefficient of determination RMSE NMSE
MLR 0.982 0.032 0.035 0.827 0.026 0.130
MLER 0.974 0.037 0.037 0.868 0.026 0.202
GEP 0.984 0.030 0.033 0.873 0.021 0.114
ensemble model 0.986 0.027 0.028 0.875 0.021 0.115
Tab.9  
error terms models
MLR MLER GEP ensemble model
maximum positive error 5.8% 6.4% 5.2% 5.0%
maximum negative error −6.8% −4.7% −6.3% −5.8%
MAPE 2.0% 2.2% 1.5% 1.6%
Tab.10  
Fig.23  
model calibration validation
the maximum turbulence the maximum velocity rest area water depth the maximum turbulence the maximum velocity rest area water depth
MLR 129.91 92.64 99.21 48.02 133.58 75.65 86.19 67.66
MLER 131.54 96.46 98.66 54.76 127.28 73.51 86.00 63.40
GEP 126.60 83.07 83.43 42.60 118.19 71.70 78.52 53.46
the ensemble model 125.60 82.80 81.88 38.98 122.34 70.30 75.42 51.37
Tab.11  
1 D V W K Fao. Fish Passes: Design, Dimensions, and Monitoring. Rome: Food and Agriculture Organization of the United Nations, 2002
2 C Katopodis, J G Williams. The development of fish passage research in a historical context. Ecological Engineering, 2012, 48: 8–18
https://doi.org/10.1016/j.ecoleng.2011.07.004
3 N Rajaratnam, G Van der Vinne, C Katopodis. Hydraulics of vertical slot fishways. Journal of Hydraulic Engineering, 1986, 112(10): 909–927
https://doi.org/10.1061/(ASCE)0733-9429(1986)112:10(909)
4 N Rajaratnam, C Katopodis, S Solanki. New designs for vertical slot fishways. Canadian Journal of Civil Engineering, 1992, 19(3): 402–414
https://doi.org/10.1139/l92-049
5 L Cea, L Pena, J Puertas, M E Vázquez-Cendón, E Peña. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. Journal of Hydraulic Engineering, 2007, 133(2): 160–172
https://doi.org/10.1061/(ASCE)0733-9429(2007)133:2(160)
6 M Bermúdez, J Puertas, L Cea, L Pena, L Balairón. Influence of pool geometry on the biological efficiency of vertical slot fishways. Ecological Engineering, 2010, 36(10): 1355–1364
https://doi.org/10.1016/j.ecoleng.2010.06.013
7 B A Marriner, A B M Baki, D Z Zhu, J D Thiem, S J Cooke, C Katopodis. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecological Engineering, 2014, 63: 88–101
https://doi.org/10.1016/j.ecoleng.2013.12.010
8 C Katopodis. Introduction to Fishway Design. Winnipeg: Freshwater Institute, 1992
9 M Liu, N Rajaratnam, D Z Zhu. Mean flow and turbulence structure in vertical slot fishways. Journal of Hydraulic Engineering, 2006, 132(8): 765–777
https://doi.org/10.1061/(ASCE)0733-9429(2006)132:8(765)
10 J Chorda, M M Maubourguet, H Roux, M Larinier, L Tarrade, L David. Two-dimensional free surface flow numerical model for vertical slot fishways. Journal of Hydraulic Research, 2010, 48(2): 141–151
https://doi.org/10.1080/00221681003703956
11 L Tarrade, A Texier, L David, M Larinier. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiology, 2008, 609(1): 177–188
https://doi.org/10.1007/s10750-008-9416-y
12 L Tarrade, G Pineau, D Calluaud, A Texier, L David, M Larinier. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environmental Fluid Mechanics, 2011, 11(1): 1–21
https://doi.org/10.1007/s10652-010-9198-4
13 M Bombač, G Novak, P Rodič, M Četina. Numerical and physical model study of a vertical slot fishway. Journal of Hydrology and Hydromechanics, 2014, 62(2): 150–159
https://doi.org/10.2478/johh-2014-0013
14 M Bombač, G Novak, J Mlačnik, M Četina. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecological Engineering, 2015, 84: 476–484
https://doi.org/10.1016/j.ecoleng.2015.09.030
15 M Larinier, F Travade, J P Porcher. Fishways: Biological basis, design criteria and monitoring. Bulletin Francais de la Peche et de la Pisciculture, 2002, 364: 1–208
16 J F Fuentes-Pérez, A T Silva, J A Tuhtan, A García-Vega, R Carbonell-Baeza, M Musall, M Kruusmaa. 3D modelling of non-uniform and turbulent flow in vertical slot fishways. Environmental Modelling & Software, 2018, 99: 156–169
https://doi.org/10.1016/j.envsoft.2017.09.011
17 J F Fuentes-Pérez, M Eckert, J A Tuhtan, M T Ferreira, M Kruusmaa, P Branco. Spatial preferences of Iberian barbel in a vertical slot fishway under variable hydrodynamic scenarios. Ecological Engineering, 2018, 125: 131–142
https://doi.org/10.1016/j.ecoleng.2018.10.014
18 G Li, S Sun, C Zhang, H Liu, T Zheng. Evaluation of flow patterns in vertical slot fishways with different slot positions based on a comparison passage experiment for juvenile grass carp. Ecological Engineering, 2019, 133: 148–159
https://doi.org/10.1016/j.ecoleng.2019.04.008
19 S Wu, N Rajaratnam, C Katopodis. Structure of flow in vertical slot fishway. Journal of Hydraulic Engineering, 1999, 125(4): 351–360
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:4(351)
20 T T Rodríguez, J P Agudo, L P Mosquera, E P González. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecological Engineering, 2006, 27(1): 37–48
https://doi.org/10.1016/j.ecoleng.2005.09.015
21 R W Wang, L David, M Larinier. Contribution of experimental fluid mechanics to the design of vertical slot fish passes. Knowledge and Management of Aquatic Ecosystems, 2010, 2(396): 78–83
https://doi.org/10.1051/kmae/2010002
22 J F Fuentes-Pérez, F J Sanz-Ronda, A Martínez de Azagra Paredes, A García-Vega. Modeling water-depth distribution in vertical-slot fishways under uniform and nonuniform scenarios. Journal of Hydraulic Engineering, 2014, 140(10): 06014016
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000923
23 B A Marriner, A B Baki, D Z Zhu, S J Cooke, C Katopodis. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecological Engineering, 2016, 90: 190–202
https://doi.org/10.1016/j.ecoleng.2016.01.032
24 Lepper P. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in Accordance with Article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg: Fraunhofer-Institute Molecular Biology and Applied Ecology, 2005
25 D Ciuha, M Povž, K Kvaternik, M Brenčič, P Muck. The design and technical solutions of passages for aquatic organisms at the HPP on the lower Sava River reach, with an emphasis on the passage at HPP Arto—Blanca.  In: Proceedings of the Mišicev Vodarski Dan. Maribor, Slovenia, 2014, 228–236 (in Slovenian)
26 G Kolman, M Mikoš, M Povž. Fish passages on hydroelectric power dams in Slovenia. Nature conservation, 2010, 24: 85–96
27 I Maddock, A Harby, P Kemp, P J Wood. Ecohydraulics: An integrated approach. Worcester: John Wiley & Sons, 2013
28 D Calluaud, G Pineau, A Texier, L David. Modification of vertical slot fishway flow with a supplementary cylinder. Journal of Hydraulic Research, 2014, 52(5): 614–629
https://doi.org/10.1080/00221686.2014.906000
29 R Goodwin, J Anderson, J Nestler. Decoding 3-D movement patternsof fish in response to hydrodynamics and water quality for forecast simulation. In: Proceedings of the 6th International Conference in Hydroinformatics. Singapore: World scientific, 2004
30 Á Rodriguez, M Bermúdez, J R Rabuñal, J Puertas, J Dorado, L Pena, L Balairón. Optical fish trajectory measurement in fishways through computer vision and artificial neural networks. Journal of Computing in Civil Engineering, 2011, 25(4): 291–301
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000092
31 J M Duguay, R W J Lacey, J. Gaucher A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecological Engineering, 2017, 103: 31–42
32 J Puertas, L Pena, T Teijeiro. Experimental approach to the hydraulics of vertical slot fishways. Journal of Hydraulic Engineering, 2004, 130(1): 10–23
https://doi.org/10.1061/(ASCE)0733-9429(2004)130:1(10)
33 C H Clay. Design of Fishways and Other Fish Facilities. 2nd ed. Ottawa: Department of Fisheries of Canada, 1995
34 M C Bell. Fisheries Handbook of Engineering Requirements and Biological Criteria. Portland, OR: Fisheries Engineering Research Program, 1973
35 J Shiri, A A Sadraddini, A H Nazemi, O Kisi, G Landeras, A Fakheri Fard, P Marti. Generalizability of Gene Expression Programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology (Amsterdam), 2014, 508: 1–11
https://doi.org/10.1016/j.jhydrol.2013.10.034
36 S Traore, A Guven. New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrigation Science, 2013, 31(1): 1–10
https://doi.org/10.1007/s00271-011-0288-y
37 H M Azamathulla, M A M Yusoff. Soft computing for prediction of river pipeline scour depth. Neural Computing & Applications, 2013, 23(7–8): 2465–2469
https://doi.org/10.1007/s00521-012-1205-x
38 H M Azamathulla, Z Ahmad, A Ab. Ghani. An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming. Neural Computing & Applications, 2013, 23(5): 1343–1349
https://doi.org/10.1007/s00521-012-1078-z
39 A Guven, A Aytek. New approach for stage–discharge relationship: gene-expression programming. Journal of Hydrologic Engineering, 2009, 14(8): 812–820
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000044
40 H M Azamathulla. Gene expression programming for prediction of scour depth downstream of sills. Journal of Hydrology (Amsterdam), 2012, 460– 461: 156–159
https://doi.org/10.1016/j.jhydrol.2012.06.034
41 A Kumar, P Goyal. Forecasting of air quality in Delhi using principal component regression technique. Atmospheric Pollution Research, 2011, 2(4): 436–444
https://doi.org/10.5094/APR.2011.050
42 A Shishegaran, A Amiri, M A Jafari. Seismic performance of box-plate, box-plate with UNP, box-plate with L-plate and ordinary rigid beam-to-column moment connections. Journal of Vibroengineering, 2018, 20(3): 1470–1487
https://doi.org/10.21595/jve.2017.18716
43 I Chenini, S Khemiri. Evaluation of ground water quality using multiple linear regression and structural equation modeling. International Journal of Environmental Science and Technology, 2009, 6(3): 509–519
https://doi.org/10.1007/BF03326090
44 W B Chen, W C Liu. Water quality modeling in reservoirs using multivariate linear regression and two neural network models. Advances in Artificial Neural Systems, 2015, 2015: 1–6
https://doi.org/10.1155/2015/521721
45 M F M Nasir, M S Samsudin, I Mohamad, M R A Awaluddin, M A Mansor, H Juahir, N Ramli. River water quality modeling using combined principle component analysis (PCA) and multiple linear regressions (MLR): A case study at Klang River, Malaysia. World Applied Sciences Journal, 2011, 14: 73–82
46 R An, J Li, R Liang, Y Tuo. Three-dimensional simulation and experimental study for optimising a vertical slot fishway. Journal of Hydro-environment Research, 2016, 12: 119–129
https://doi.org/10.1016/j.jher.2016.05.005
47 C Hirt, B Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201–225
https://doi.org/10.1016/0021-9991(81)90145-5
48 A Prosperetti, G Tryggvason. Computational Methods for Multiphase Flow. Cambridge: Cambridge University, 2007
49 M Oertel, D B Bung. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. Journal of Hydraulic Research, 2012, 50(1): 89–97
https://doi.org/10.1080/00221686.2011.639981
50 C Hirsch. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Burlington: Elsevier, 2007
51 A Bayon, D Valero, R García-Bartual, F J Vallés-Morán, P A López-Jiménez. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 2016, 80: 322–335
https://doi.org/10.1016/j.envsoft.2016.02.018
52 D Keyes, A Ecer, N Satofuka, P Fox, J Periaux. Parallel Computational Fluid Dynamics’ 99: Towards Teraflops, Optimization and Novel Formulations. Amsterdam: Elsevier, 2000
53 L Chen, Y Li. A numerical method for two-phase flows with an interface. Environmental Modelling & Software, 1998, 13(3–4): 247–255
https://doi.org/10.1016/S1364-8152(98)00025-5
54 J M Hyman. Numerical methods for tracking interfaces. Physica D. Nonlinear Phenomena, 1984, 12(1–3): 396–407
https://doi.org/10.1016/0167-2789(84)90544-X
55 A Bayon-Barrachina, P A Lopez-Jimenez. Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 2015, 17(4): 662–678
https://doi.org/10.2166/hydro.2015.041
56 O. Ubbink Numerical prediction of two fluid systems with sharp interfaces. Dissertation for the Doctoral Degree. London: University of London and Diploma of Imperial College, 1997
57 D Bung, A Schlenkhoff. Self-aerated skimming flow on embankment stepped spillways: The effect of additional micro-roughness on energy dissipation and oxygen transfer. In: Proceedings from first IAHR European congress: May 2010, Edinburgh. Edinburgh: Heriot-Watt University, 2010
58 M Pfister. Chute aerators: Steep deflectors and cavity subpressure. Journal of Hydraulic Engineering, 2011, 137(10): 1208–1215
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000436
59 H Chanson. Hydraulics of aerated flows: Qui pro quo? Journal of Hydraulic Research, 2013, 51(3): 223–243
https://doi.org/10.1080/00221686.2013.795917
60 R J Lobosco, H E Schulz, A L A Simões. Hydrodynamics-Optimizing Methods and Tools. Sao Paulo, 2011, 1–25
61 G E Tøge. The significance of Froude number in vertical pipes: A CFD study. Thesis for the Master’s Degree. Norway: University of Stavanger, 2012
62 D Valero, D B Bung. Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR World Congress. The Hague, the Netherlands, 1–10
63 J Ma, A A Oberai, R T Lahey, D A Drew. Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass Transfer, 2011, 47(8): 911–919
https://doi.org/10.1007/s00231-011-0867-8
64 D Valero, R García-Bartual. Calibration of an air entrainment model for CFD spillway applications. In: Advances in hydroinformatics. Singapore: Springer, 2016, 571–582
65 J J Kim, J J Baik. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–ε turbulence model. Atmospheric Environment, 2004, 38(19): 3039–3048
https://doi.org/10.1016/j.atmosenv.2004.02.047
66 F A Bombardelli, I Meireles, J Matos. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways. Environmental Fluid Mechanics, 2011, 11(3): 263–288
https://doi.org/10.1007/s10652-010-9188-6
67 T Xu, Y C Jin. Numerical investigation of flow in pool-and-weir fishways using a meshless particle method.  Journal of hydraulic research,  2014, 52(6): 849–861
https://doi.org/doi.org/10.1080/00221686.2014.948501
68 E Quaranta, C Katopodis, R Revelli, C Comoglio. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Research and Applications, 2017, 33(8): 1295–1305
https://doi.org/10.1002/rra.3193
69 E Guiny, D Ervine, J Armstrong. Hydraulic and biological aspects of fish passes for Atlantic salmon. Journal of Hydraulic Engineering, 2005, 131(7): 542–553
https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(542)
70 R R Morrison, R H Hotchkiss, M Stone, D Thurman, A R Horner-Devine. Turbulence characteristics of flow in a spiral corrugated culvert fitted with baffles and implications for fish passage. Ecological Engineering, 2009, 35(3): 381–392
https://doi.org/10.1016/j.ecoleng.2008.10.012
71 A T Silva, J M Santos, M T Ferreira, A N Pinheiro, C Katopodis. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway. River Research and Applications, 2011, 27(3): 360–373
https://doi.org/10.1002/rra.1363
72 K M Hamdia, T Rabczuk. Fracture, Fatigue and Wear. Singapore: Springer, 2018
73 M F Badawy, M A Msekh, K M Hamdia, M K Steiner, T Lahmer, T Rabczuk. Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probabilistic Engineering Mechanics, 2017, 50: 64–75
https://doi.org/10.1016/j.probengmech.2017.10.003
74 V P Nguyen, H Lian, T Rabczuk, S Bordas. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82
https://doi.org/10.1016/j.enggeo.2017.04.010
75 T Rabczuk, R Gracie, J H Song, T Belytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
https://doi.org/10.1002/nme.2670
76 W A Wall, T Rabczuk. Fluid-structure interaction in lower airways of CT-based lung geometries. International Journal for Numerical Methods in Fluids, 2008, 57(5): 653–675
https://doi.org/10.1002/fld.1763
77 T Rabczuk, E Samaniego, T Belytschko. Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction. International Journal of Impact Engineering, 2007, 34(2): 163–177
https://doi.org/10.1016/j.ijimpeng.2005.08.012
78 T Nguyen-Thoi, P Phung-Van, T Rabczuk, H Nguyen-Xuan, C. Le-Van An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems. International Journal of Computational Methods, 2013, 10(1): 1340003
https://doi.org/10.1142/S0219876213400033
79 B Najafi, S Faizollahzadeh Ardabili, S Shamshirband, K W Chau, T Rabczuk. Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 611–624
https://doi.org/10.1080/19942060.2018.1502688
80 S Zhou, X Zhuang, T Rabczuk. Phase-field modeling of fluid-driven dynamic cracking in porous media. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 169–198
https://doi.org/10.1016/j.cma.2019.03.001
81 C Ferreira. Soft Computing and Industry. London: Springer, 2002, 635–653
82 J M Bates, C W Granger. The combination of forecasts. Journal of the Operational Research Society, 1969, 20(4): 451–468
https://doi.org/10.1057/jors.1969.103
83 K Takezawa. A revision of AIC for normal error models. Open Journal of Statistics, 2012, 2(3): 309–312
https://doi.org/10.4236/ojs.2012.23038
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed