Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (1): 61-79   https://doi.org/10.1007/s11709-020-0684-6
  本期目录
Simulation of foamed concrete compressive strength prediction using adaptive neuro-fuzzy inference system optimized by nature-inspired algorithms
Ahmad SHARAFATI1, H. NADERPOUR2, Sinan Q. SALIH3, E. ONYARI4, Zaher Mundher YASEEN5()
1. Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2. Faculty of Civil Engineering, Semnan University, Semnan 3513119111, Iran
3. Computer Science Department, Dijlah University College, Baghdad, Iraq
4. Department of Civil and Chemical Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
5. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
 全文: PDF(1527 KB)   HTML
Abstract

Concrete compressive strength prediction is an essential process for material design and sustainability. This study investigates several novel hybrid adaptive neuro-fuzzy inference system (ANFIS) evolutionary models, i.e., ANFIS–particle swarm optimization (PSO), ANFIS–ant colony, ANFIS–differential evolution (DE), and ANFIS–genetic algorithm to predict the foamed concrete compressive strength. Several concrete properties, including cement content (C), oven dry density (O), water-to-binder ratio (W), and foamed volume (F) are used as input variables. A relevant data set is obtained from open-access published experimental investigations and used to build predictive models. The performance of the proposed predictive models is evaluated based on the mean performance (MP), which is the mean value of several statistical error indices. To optimize each predictive model and its input variables, univariate (C, O, W, and F), bivariate (C–O, C–W, C–F, O–W, O–F, and W–F), trivariate (C–O–W, C–W–F, O–W–F), and four-variate (C–O–W–F) combinations of input variables are constructed for each model. The results indicate that the best predictions obtained using the univariate, bivariate, trivariate, and four-variate models are ANFIS–DE– (O) (MP= 0.96), ANFIS–PSO– (C–O) (MP= 0.88), ANFIS–DE– (O–W–F) (MP= 0.94), and ANFIS–PSO– (C–O–W–F) (MP= 0.89), respectively. ANFIS–PSO– (C–O) yielded the best accurate prediction of compressive strength with an MP value of 0.96.

Key wordsfoamed concrete    adaptive neuro fuzzy inference system    nature-inspired algorithms    prediction of compressive strength
收稿日期: 2019-10-04      出版日期: 2021-04-12
Corresponding Author(s): Zaher Mundher YASEEN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 61-79.
Ahmad SHARAFATI, H. NADERPOUR, Sinan Q. SALIH, E. ONYARI, Zaher Mundher YASEEN. Simulation of foamed concrete compressive strength prediction using adaptive neuro-fuzzy inference system optimized by nature-inspired algorithms. Front. Struct. Civ. Eng., 2021, 15(1): 61-79.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0684-6
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I1/61
Fig.1  
Fig.2  
parameters magnitude
number of clusters 5
maximum iteration 100
minimum improvement 1e-5
FCM-degree of membership of the data point 2
Tab.1  
optimizations method parameters magnitude
ANFIS train epoch 200
train-error goal 0
train-initial step size 0.01
train-step size decrease 0.9
train-step size increase 1.1
ANFIS-DE lower bound of scaling factor 0.2
upper bound of scaling factor 0.8
crossover probability .1
ANFIS-ACO number of iterations 1000
number of population 40
intensification factor 0.5
deviation-distance ratio 1
ANFIS-GA number of iterations 1000
number of population 40
crossover percentage 0.7
number of offspring 70
mutation rate 0.1
mutation percentage 0.5
number of mutants 50
selection pressure 8
ANFIS-PSO number of iterations 1000
number of population 40
inertia weight 1
inertia weight damping ratio 0.99
personal learning coefficient 0.9
global learning coefficient 2
Tab.2  
input combinations models input
Model-1 C
Model-2 O
Model-3 W
Model-4 F
Model-5 C-O
Model-6 C-W
Model-7 C-F
Model-8 O-W
Model-9 O-F
Model-10 W-F
Model-11 C-O-W
Model-12 C-W-F
Model-13 O-W-F
Model-14 C-O-W-F
Tab.3  
input combinations models RMSE MAE LMI CC PIAS WI SRMSE
Model-1 9.36 6.96 0.47 0.85 3.53 0.90 51.55
Model-2 10.79 6.28 0.53 0.81 12.50 0.84 59.42
Model-3 17.34 12.34 0.07 0.24 22.80 0.35 95.51
Model-4 18.43 10.38 0.22 0.12 29.08 0.43 101.51
Model-5 11.61 7.22 0.45 0.78 8.75 0.80 63.92
Model-6 9.36 6.96 0.47 0.85 3.53 0.90 51.55
Model-7 9.36 6.96 0.47 0.85 3.53 0.90 51.55
Model-8 10.79 6.28 0.53 0.81 12.50 0.84 59.41
Model-9 9.36 6.96 0.47 0.85 3.53 0.90 51.55
Model-10 17.34 12.34 0.07 0.24 22.79 0.35 95.51
Model-11 9.36 6.96 0.47 0.85 3.53 0.90 51.55
Model-12 11.71 7.63 0.42 0.81 14.38 0.79 64.47
Model-13 10.79 6.28 0.53 0.81 12.51 0.84 59.42
Model-14 11.71 7.63 0.42 0.81 14.38 0.79 64.47
Tab.4  
input combinations models RMSE MAE LMI CC PIAS WI SRMSE
Model-1 10.79 8.23 0.38 0.81 14.36 0.85 59.43
Model-2 11.68 6.46 0.51 0.75 10.61 0.83 64.31
Model-3 17.35 10.39 0.21 0.34 31.56 0.45 95.53
Model-4 18.83 11.29 0.15 0.17 33.18 0.46 103.69
Model-5* 7.00 4.89 0.63 0.94 6.74 0.94 38.55
Model-6 10.10 7.83 0.41 0.83 12.31 0.88 55.64
Model-7 10.99 8.60 0.35 0.83 13.89 0.83 60.50
Model-8 8.02 5.43 0.59 0.92 11.10 0.92 44.16
Model-9 11.20 8.68 0.34 0.81 9.96 0.82 61.70
Model-10 17.44 10.93 0.17 0.28 28.83 0.41 96.02
Model-11 12.10 8.95 0.32 0.81 17.55 0.77 66.64
Model-12 10.11 7.55 0.43 0.85 12.55 0.87 55.68
Model-13 7.55 4.96 0.63 0.92 9.07 0.94 41.59
Model-14 10.05 7.31 0.45 0.87 8.48 0.86 55.32
Tab.5  
input combinations models RMSE MAE LMI CC PIAS WI SRMSE
Model-1 13.61 10.76 0.19 0.72 14.79 0.68 74.95
Model-2 10.29 6.65 0.50 0.89 10.71 0.84 56.68
Model-3 17.95 11.14 0.16 0.23 33.59 0.40 98.82
Model-4 15.93 10.06 0.24 0.62 27.49 0.47 87.74
Model-5 9.72 6.48 0.51 0.90 9.04 0.87 53.53
Model-6 14.55 11.24 0.15 0.65 13.44 0.59 80.12
Model-7 16.48 11.59 0.12 0.72 -4.67 0.82 90.75
Model-8 10.37 6.71 0.49 0.89 9.42 0.84 57.10
Model-9 127.28 33.83 -1.56 0.68 -127.64 0.29 700.89
Model-10 17.28 11.61 0.12 0.21 17.14 0.29 95.15
Model-11 11.91 10.18 0.23 0.75 5.81 0.80 65.59
Model-12 13.38 10.95 0.17 0.71 8.80 0.69 73.67
Model-13 10.44 6.77 0.49 0.88 11.26 0.84 57.48
Model-14 14.67 10.95 0.17 0.63 17.27 0.60 80.78
Tab.6  
Input combinations models RMSE MAE LMI CC PIAS d index SRMSE
Model-1 13.60 9.50 0.28 0.79 20.11 0.65 74.89
Model-2 7.53 5.22 0.61 0.93 9.80 0.93 41.44
Model-3 17.23 10.97 0.17 0.25 19.71 0.40 94.86
Model-4 15.56 10.05 0.24 0.69 26.08 0.47 85.68
Model-5 16.16 8.01 0.40 0.42 16.73 0.61 88.99
Model-6 15.87 11.40 0.14 0.73 -5.58 0.83 87.38
Model-7 13.19 10.23 0.23 0.77 19.52 0.70 72.65
Model-8 7.21 5.09 0.62 0.92 5.32 0.94 39.68
Model-9 14.57 11.21 0.15 0.65 14.16 0.59 80.25
Model-10 17.67 11.10 0.16 0.24 29.66 0.39 97.28
Model-11 11.90 9.39 0.29 0.74 12.80 0.84 65.55
Model-12 14.24 10.71 0.19 0.70 17.96 0.62 78.41
Model-13 7.28 5.56 0.58 0.94 5.51 0.94 40.10
Model-14 12.78 10.22 0.23 0.75 14.00 0.74 70.36
Tab.7  
input combinations models RMSE MAE LMI CC PIAS d index SRMSE
Model-1 11.02 8.57 0.35 0.81 -0.12 0.90 60.70
Model-2 8.73 5.91 0.55 0.89 13.70 0.91 48.09
Model-3 19.30 12.52 0.05 -0.03 24.40 0.35 106.30
Model-4 18.27 9.98 0.25 0.18 29.02 0.46 100.61
Model-5 15.39 8.13 0.39 0.89 -18.05 0.88 84.74
Model-6 12.45 9.34 0.29 0.71 11.45 0.79 68.54
Model-7 9.70 7.16 0.46 0.85 15.56 0.90 53.39
Model-8 23.14 12.00 0.09 0.70 11.86 0.77 127.42
Model-9 11.65 8.12 0.39 0.78 12.56 0.81 64.15
Model-10 17.36 10.49 0.21 0.25 24.36 0.39 95.62
Model-11 10.53 7.64 0.42 0.86 15.92 0.85 58.01
Model-12 10.95 7.99 0.40 0.82 2.62 0.90 60.30
Model-13 8.99 6.15 0.54 0.89 14.28 0.90 49.50
Model-14 35.50 14.34 -0.08 0.73 -26.67 0.65 195.51
Tab.8  
models input combinations models RMSE MAE LMI CC PIAS WI SRMSE
ANFIS Model-6 9.36 6.96 0.47 0.85 3.53 0.90 51.55
ANFIS-PSO Model-5 7.00 4.89 0.63 0.94 6.74 0.94 38.55
ANFIS-ANT Model-5 9.72 6.48 0.51 0.90 9.04 0.87 53.53
ANFIS-DE Model-8 7.21 5.09 0.62 0.92 5.32 0.94 39.68
ANFIS-GA Model-2 8.73 5.91 0.55 0.89 13.70 0.91 48.09
Tab.9  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
researchers models CC
[92] FPNN 0.35-0.82
[93] ANNs, MR, SVM, MART, BRT 0.61-0.91
[94] EANN 0.89
current research ANFIS-PSO 0.94
Tab.10  
1 K A Khan, I Ahmad, M Alam. Effect of Ethylene Vinyl Acetate (EVA) on the setting time of cement at different temperatures as well as on the mechanical strength of concrete. Arabian Journal for Science and Engineering, 2019, 44: 4075–4084
2 C Zhang, H Liu, S Li, C Liu, L Qin, J Chang, R. ChengExperimental study on the expansion of a new cement-based borehole sealing material using different additives and varied water-cement ratios. Arabian Journal for Science and Engineering, 2019, 44: 1–9
3 M A DeRousseau, J R Kasprzyk, W V Srubar. Computational design optimization of concrete mixtures: A review. Cement and Concrete Research, 2018, 109: 42–53
https://doi.org/10.1016/j.cemconres.2018.04.007
4 Y Guo, J Xie, J Zhao, K Zuo. Utilization of unprocessed steel slag as fine aggregate in normal- and high-strength concrete. Construction & Building Materials, 2019, 204: 41–49
https://doi.org/10.1016/j.conbuildmat.2019.01.178
5 E P Kearsley. Just Foamed Concrete—An overview. Specialist Techniques and Materials for Concrete Construction. London: Thomas Telford Publishing, 1999.
https://doi.org/10.1016/S0168-583X(97)00798-2.
6 M Nehdi, Y Djebbar, A Khan. Neural network model for preformed-foam cellular concrete. ACI Materials Journal, 2001, 98(5): 402–409
7 Z M Yaseen, R C Deo, A Hilal, A M Abd, L C Bueno, S Salcedo-Sanz, M L Nehdi. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 2018, 115: 112–125
https://doi.org/10.1016/j.advengsoft.2017.09.004
8 K Kovler, N Roussel. Properties of fresh and hardened concrete. Cement and Concrete Research, 2011, 41(7): 775–792
https://doi.org/10.1016/j.cemconres.2011.03.009
9 T Ayub, N Shafiq, M Fadhil Nuruddin. Stress-strain response of high strength concrete and application of the existing models. Research Journal of Applied Sciences, Engineering and Technology, 2014, 8(10): 1174–1190
https://doi.org/10.19026/rjaset.8.1083
10 F Al-Mufadi, H A Sherif. Effect of multiwalled carbon nanotubes on sensing crack initiation and ultimate strength of cement nanocomposites. Arabian Journal for Science and Engineering, 2019, 44: 1403–1413
11 L Liu, J Xin, Y Feng, B Zhang, K I Song. Effect of the cement-tailing ratio on the hydration products and microstructure characteristics of cemented paste backfill. Arabian Journal for Science and Engineering, 2019, 44(7): 6547–6556
12 A A Hilal, N H Thom, A R Dawson. On void structure and strength of foamed concrete made without/with additives. Construction & Building Materials, 2015, 85: 157–164
https://doi.org/10.1016/j.conbuildmat.2015.03.093
13 E P Kearsley, P J Wainwright. The effect of porosity on the strength of foamed concrete. Cement and Concrete Research, 2002, 32(2): 233–239
https://doi.org/10.1016/S0008-8846(01)00665-2
14 C Bing, W Zhen, L Ning. Experimental research on properties of high-strength foamed concrete. Journal of Materials in Civil Engineering, 2012, 24(1): 113–118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000353
15 J C Lim, T Ozbakkaloglu. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression. Construction & Building Materials, 2014, 71: 492–509
https://doi.org/10.1016/j.conbuildmat.2014.08.050
16 J Liu, K Tang, Q Qiu, D Pan, Z Lei, F Xing. Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. Materials (Basel), 2014, 7(9): 6646–6659
https://doi.org/10.3390/ma7096646
17 MH Thakrele. Experimental study on foam concrete. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development 2014, 4(1): 145–157
https://doi.org/10.1152/ajpcell.00024.2007.
18 C Ma, B Chen. Properties of foamed concrete containing water repellents. Construction & Building Materials, 2016, 123: 106–114
https://doi.org/10.1016/j.conbuildmat.2016.06.148
19 D Falliano, D De Domenico, G Ricciardi, E Gugliandolo. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Construction & Building Materials, 2018, 165 : 735–749
https://doi.org/10.1016/j.conbuildmat.2017.12.241
20 A M Abd, S M Abd. Modelling the strength of lightweight foamed concrete using support vector machine (SVM). Case Studies in Construction Materials, 2017, 6: 8–15
https://doi.org/10.1016/j.cscm.2016.11.002
21 B A Young, A Hall, L Pilon, P Gupta, G Sant. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions? New insights from statistical analysis and machine learning methods. Cement and Concrete Research, 2019, 115: 379–388
22 E K K Nambiar, K Ramamurthy. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cement and Concrete Composites, 2006, 28(9): 752–760
https://doi.org/10.1016/j.cemconcomp.2006.06.001
23 E K K Nambiar, K Ramamurthy. Models for strength prediction of foam concrete. Materials and Structures/Materiaux et Constructions, 2008, 41(2): 247–254
https://doi.org/10.1617/s11527-007-9234-0.
24 M A O Mydin. Modeling of transient heat transfer in foamed concrete slab. Journal of Engineering Science and Technology 2013, 8(3): 326–343
25 W Y Wang, J Li, W Liu, Z K Liu. Integrated computational materials engineering for advanced materials: A brief review. Computational Materials Science, 2019, 158: 42–48
26 H Adeli. Neural networks in civil engineering: 1989–2000. Computer-Aided Civil and Infrastructure Engineering, 2001, 16: 126–142
27 D Van Dao, H B Ly, S H Trinh, T T Le, B T Pham. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials (Basel), 2019, 12: 983
28 Z H Lu, Y G Zhao. Empirical stress-strain model for unconfined high-strength concrete under uniaxial compression. Journal of Materials in Civil Engineering, 2010, 22(11): 1181–1186
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000095
29 K Bhargava, A K Ghosh, Y Mori, S Ramanujam. Corrosion-induced bond strength degradation in reinforced concrete-Analytical and empirical models. Nuclear Engineering and Design, 2007, 237(11): 1140–1157
https://doi.org/10.1016/j.nucengdes.2007.01.010
30 Z M Yaseen, B Keshtegar, H J Hwang, M L Nehdi. Predicting reinforcing bar development length using polynomial chaos expansions. Engineering Structures, 2019, 195: 524–535
31 E K Onyari, B D Ikotun. Prediction of compressive and flexural strengths of a modified zeolite additive mortar using artificial neural network. Construction & Building Materials, 2018, 187: 1232–1241
https://doi.org/10.1016/j.conbuildmat.2018.08.079
32 K M Hamdia, M Arafa, M Alqedra. Structural damage assessment criteria for reinforced concrete buildings by using a Fuzzy Analytic Hierarchy process. Underground Space, 2018, 3: 243–249
https://doi.org/10.1016/j.undsp.2018.04.002
33 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641.
34 K M Hamdia, H Ghasemi, X Zhuang, N Alajlan, T Rabczuk. Computational machine learning representation for the flexoelectricity effect in truncated pyramid structures. Computers, Materials and Continua, 2019, 59(1): 79–87
https://doi.org/10.32604/cmc.2019.05882.
35 J S R Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23: 665–685
https://doi.org/10.1109/21.256541
36 Z M Yaseen, M M Ramal, L Diop, O Jaafar, V Demir, O Kisi. Hybrid adaptive neuro-fuzzy models for water quality index estimation. Water Resources Management, 2018, 32: 2227–2245
https://doi.org/10.1007/s11269-018-1915-7
37 Z M Yaseen, M I Ghareb, I Ebtehaj, H Bonakdari, D Ravinesh, R Siddique, S Heddam, A A Yusif, R Deo. Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water Resources Management, 2017, 32(1): 105–122
38 V Moosavi, M Vafakhah, B Shirmohammadi, M Ranjbar. Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by taguchi method for groundwater level forecasting. Arabian Journal for Science and Engineering, 2012, 39(3): 1785–1796
https://doi.org/10.1007/s13369-013-0762-3
39 U Kose, A Arslan. Forecasting chaotic time series via anfis supported by vortex optimization algorithm: applications on electroencephalogram time series. Arabian Journal for Science and Engineering, 2017, 42(8): 3103–3114
https://doi.org/10.1007/s13369-016-2279-z
40 F Khademi, S M Jamal, N Deshpande, S Londhe. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment, 2016, 5(2): 355–369
https://doi.org/10.1016/j.ijsbe.2016.09.003.
41 A Sadrmomtazi, J Sobhani, M A Mirgozar. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Construction & Building Materials, 2013, 42: 205–216
https://doi.org/10.1016/j.conbuildmat.2013.01.016
42 M Saridemir. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Advances in Engineering Software, 2009, 40(9): 920–927
https://doi.org/10.1016/j.advengsoft.2008.12.008
43 J Sobhani, M Najimi, A R Pourkhorshidi, T Parhizkar. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Construction & Building Materials, 2010, 24: 709–718
https://doi.org/10.1016/j.conbuildmat.2009.10.037
44 R Madandoust, J H Bungey, R Ghavidel. Prediction of the concrete compressive strength by means of core testing using GMDH-type neural network and ANFIS models. Computational Materials Science, 2012, 51(1): 261–272
https://doi.org/10.1016/j.commatsci.2011.07.053
45 B Ahmadi-Nedushan. Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models. Construction & Building Materials, 2012, 36: 665–673
46 J Amani, R Moeini. Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Scientia Iranica, 2012, 19: 242–248
https://doi.org/10.1016/j.scient.2012.02.009
47 O Taylan, I A Darrab. Determining optimal quality distribution of latex weight using adaptive neuro-fuzzy modeling and control systems. Computers & Industrial Engineering, 2011, 61(3): 686–696
https://doi.org/10.1016/j.cie.2011.05.002
48 D Karaboga, E Kaya. Training ANFIS by using an adaptive and hybrid artificial bee colony algorithm (aABC) for the identification of nonlinear static systems. Arabian Journal for Science and Engineering, 2019, 44: 3531–3547
49 A A Al-Musawi, A A H Alwanas, S Q Salih, Z H Ali, M T Tran, Z M Yaseen. Shear strength of SFRCB without stirrups simulation: Implementation of hybrid artificial intelligence model. Engineering with Computers, 2018, 36(1): 1–11
https://doi.org/10.1007/s00366-018-0681-8
50 M A Jayaram, M C Nataraja, C N Ravi Kumar. Design of high performance concrete mixes through particle swarm optimization. Journal of Intelligent Systems, 2010, 19(3): 249–264
https://doi.org/10.1515/JISYS.2010.19.3.249.
51 M Flint, S Grünewald, J Coenders. Ant colony optimization for ultra high performance concrete structures. Designing and Building with UHPFRC, 2013, 4(9): 12164–12177
https://doi.org/10.1002/9781118557839.ch41.
52 G Quaranta, A Fiore, G C Marano. Optimum design of prestressed concrete beams using constrained differential evolution algorithm. Structural and Multidisciplinary Optimization, 2014, 49(3): 441–453
https://doi.org/10.1007/s00158-013-0979-5
53 Christiansen A D, Hernández F S. A simple genetic algorithm for the design of reinforced concrete beams. Engineering with Computers, 1997, 13(4): 185–196
https://doi.org/10.1007/BF01200046
54 Z M Yaseen, M T Tran, S Kim, T Bakhshpoori, R C Deo. Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach. Engineering Structures, 2018, 177: 244–255
https://doi.org/10.1016/j.engstruct.2018.09.074
55 A Ashrafian, F Shokri, M J T Amiri, Z M Yaseen, M Rezaie-Balf. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Construction & Building Materials, 2020, 230: 117048
56 Q T Bui, M Van Pham, Q H Nguyen, L X Nguyen, H M Pham. Whale Optimization Algorithm and Adaptive Neuro-Fuzzy Inference System: A hybrid method for feature selection and land pattern classification. International Journal of Remote Sensing, 2019, 40: 1–16
57 A Jaafari, E K Zenner, M Panahi, H Shahabi. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 2019, 266: 198–207
58 K Elbaz, S L Shen, A Zhou, D J Yuan, Y S Xu. Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Applied Sciences (Basel, Switzerland), 2019, 9(4): 780–797
59 P A Sari, M Suhatril, N Osman, M A Mu’azu, J Katebi, A Abavisani, N Ghaffari, E S Chahnasir, K Wakil, M Khorami, D Petkovic. Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques. Engineering with Computers, 2019, 36(4): 1347– 1354
60 E P Kearsley, P J Wainwright. The effect of high fly ash content on the compressive strength of foamed concrete. Cement and Concrete Research, 2001, 31(1): 105–112
https://doi.org/10.1016/S0008-8846(00)00430-0
61 P J Tikalsky, J Pospisil, W MacDonald. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete. Cement and Concrete Research, 2004, 34(5): 889–893
https://doi.org/10.1016/j.cemconres.2003.11.005
62 M R Jones, A McCarthy. Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 2005, 57(1): 21–31
https://doi.org/doi:10.1680/macr.57.1.21.57866
63 Z Pan, F Hiromi, T Wee. Preparation of high performance foamed concrete from cement, sand and mineral admixtures. Journal Wuhan University of Technology, Materials. Science Editor, 2007, 22(2): 295–298
https://doi.org/10.1007/s11595-005-2295-4
64 H Y Sun, A M Gong, Y L Peng, X Wang. The study of foamed concrete with polypropylene fiber and high volume fly ash. Applied Mechanics and Materials, 2011, 90–93: 1039–1043
https://doi.org/10.4028/www.scientific.net/amm.90-93.1039.
65 J V Abellan-Nebot, F R Subrión. A review of machining monitoring systems based on artificial intelligence process models. International Journal of Advanced Manufacturing Technology, 2009, 47(1–4): 237–257
https://doi.org/10.1007/s00170-009-2191-8
66 Z Yaseen, I Ebtehaj, S Kim, H Sanikhani, H Asadi, M Ghareb, H, Bonakdari W H M W Mohtar, N Al-Ansari, S Shahid. Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water (Basel), 2019, 11: 502
https://doi.org/10.3390/w11030502
67 H Naderpour, A Kheyroddin, G G Amiri. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 2010, 92(12): 2817–2829
https://doi.org/10.1016/j.compstruct.2010.04.008
68 H Naderpour, S A Alavi. A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System. Composite Structures, 2017, 170: 215–227
https://doi.org/10.1016/j.compstruct.2017.03.028
69 F Demir. A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic. Cement and Concrete Research, 2005, 35(8): 1531–1538
https://doi.org/10.1016/j.cemconres.2005.01.001
70 R. Fullér Neural Fuzzy Systems. Turku: Abo Akademi University, 1995
https://doi.org/951–650–624–0.
71 R Eberhart, J Kennedy. A new optimizer using particle swarm theory. In: MHS’95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995: 39–43
https://doi.org/10.1109/MHS.1995.494215.
72 Y Shi, R C Eberhart. Empirical study of particle swarm optimization. Evolutionary computation, 1999. CEC 99. In: Proceedings of the 1999 Congress. 1999, 1945–1950
73 M Dorigo, K Socha. Ant Colony Optimization. Handbook of Approximation Algorithms and Metaheuristics. 2007
https://doi.org/10.1201/9781420010749.
74 M Dorigo, G Di Caro. Ant colony optimization: A new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999. Washington, D.C.: IEEE, 1999
https://doi.org/10.1109/CEC.1999.782657.
75 D Merkle, M Middendorf, H Schmeck. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 333–346
https://doi.org/10.1109/TEVC.2002.802450
76 R Storn, K Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11: 341–359
https://doi.org/10.1023/A:1008202821328
77 K Price, R M Storn, J A Lampinen. Differential evolution: A practical approach to global optimization (natural computing Series). Journal of Heredity, 2005, 41(1): 124–130
https://doi.org/10.3109/03639045.2013.850709
78 C García-Martínez, F J Rodriguez, M Lozano. Genetic Algorithms. Handbook of Heuristics. 2018
https://doi.org/10.1007/978-3-319-07124-4_28.
79 D E Golberg. Genetic algorithms in search, optimization, and machine learning. Choice Reviews Online, 2013, 27(2): 301–315
https://doi.org/10.5860/choice.27-0936.
80 G R Harik, F G Lobo, D E Goldberg. The compact genetic algorithm. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 287–297
https://doi.org/10.1109/4235.797971
81 M A Shoorehdeli, M Teshnehlab, A K Sedigh. Novel hybrid learning algorithms for tuning ANFIS parameters using adaptive weighted PSO. In: 2007 IEEE International Fuzzy Systems Conference. London: IEEE, 2007, 1–6
82 H Yang, M Hasanipanah, M M Tahir, D T Bui. Intelligent prediction of blasting-induced ground vibration using ANFIS optimized by GA and PSO. Natural Resources Research, 2019, 29: 1–12
83 H Marzi, A Haj Darwish, H Helfawi. Training ANFIS using the enhanced Bees Algorithm and least squares estimation. Intelligent Automation & Soft Computing, 2017, 23: 227–234
84 A A H Alwanas, A A Al-Musawi, S Q Salih, H Tao, M Ali, Z M Yaseen. Load-carrying capacity and mode failure simulation of beam-column joint connection: Application of self-tuning machine learning model. Engineering Structures, 2019, 194: 220–229
https://doi.org/10.1016/j.engstruct.2019.05.048
85 B Keshtegar, M Bagheri, Z M Yaseen. Shear strength of steel fiber-unconfined reinforced concrete beam simulation: Application of novel intelligent model. Composite Structures, 2019, 212: 230–242
86 Z M Yaseen, S M Awadh, A Sharafati, S Shahid. Complementary data-intelligence model for river flow simulation. Journal of Hydrology (Amsterdam), 2018, 567: 180–190
https://doi.org/10.1016/j.jhydrol.2018.10.020
87 Z M Yaseen, M Ehteram, A Sharafati, S Shahid, N Al-Ansari, A El-Shafie. The integration of nature-inspired algorithms with Least Square Support Vector regression models: Application to modeling river dissolved oxygen concentration. Water (Switzerland), 2018, 10(9): 1124–1131
https://doi.org/10.3390/w10091124
88 Z A Al-Sudani, S Q Salih, Z M Yaseen. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology (Amsterdam), 2019, 573: 1–12
89 A Sharafati, A Tafarojnoruz, M Shourian, Z M Yaseen. Simulation of the depth scouring downstream sluice gate: The validation of newly developed data-intelligent models. Journal of Hydro-environment Research, 2019, 29: 20–30
90 A Sharafati, K Khosravi, P Khosravinia, K Ahmed, S A Salman, Z M Yaseen, S Shahid. The potential of novel data mining models for global solar radiation prediction. International Journal of Environmental Science and Technology, 2019, 16(11): 7147– 7164
https://doi.org/10.1007/s13762-019-02344-0
91 A Sharafati, R Yasa, H M Azamathulla. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. Journal of Pipeline Systems Engineering and Practice, 2018, 9: 4018024
92 M H Fazel Zarandi, I B Türksen, J Sobhani, A A Ramezanianpour. Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 2008, 8(1): 488–498
https://doi.org/10.1016/j.asoc.2007.02.010
93 J S Chou, C K Chiu, M Farfoura, I Al-Taharwa. Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. Journal of Computing in Civil Engineering, 2011, 25: 242–253
https://doi.org/10.1061/(asce)cp.1943-5487.0000088
94 M Nikoo, F Torabian Moghadam, Ł. Sadowski Prediction of concrete compressive strength by evolutionary artificial neural networks. Advances in Materials Science and Engineering, 2015, 2015: 1–8
95 N Vu-Bac, X Zhuang, T Rabczuk. Uncertainty quantification for mechanical properties of polyethylene based on fully atomistic model. Materials (Basel), 2019, 12(21): 3613–3628
https://doi.org/10.3390/ma12213613
96 N Vu-Bac, R Rafiee, X Zhuang, T Lahmer, T Rabczuk. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
97 M Kozłowski, M Kadela. Mechanical characterization of lightweight foamed concrete. Advances in Materials Science and Engineering, 2018, 2018: 1–8
https://doi.org/10.1155/2018/6801258
98 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
99 N Vu-Bac, T Lahmer, H Keitel, J Zhao, X Zhuang, T Rabczuk. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
https://doi.org/10.1016/j.mechmat.2013.07.021
100 N Vu-Bac, T X Duong, T Lahmer, X Zhuang, R A Sauer, H S Park, T Rabczuk. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering, 2018, 27(14): 713–715
https://doi.org/10.1016/j.cma.2017.09.034
101 N Vu-Bac, T X Duong, T Lahmer, P Areias, R A Sauer, H S Park, T Rabczuk. A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 480–510
https://doi.org/10.1016/j.cma.2019.03.011
102 S Q Salih, A A Alsewari. A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Computing & Applications, 2019, 32: 1–28
103 M A Ghorbani, R C Deo, Z M Yaseen, M H Kashani. Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran. Theotetical and Applied Climatology, 2017, 133: 1119–1131
https://doi.org/10.1007/s00704-017-2244-0.
104 K M Hamdia, H Ghasemi, Y Bazi, H AlHichri, N Alajlan, T Rabczuk. A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elements in Analysis and Design, 2019, 165: 21–30
https://doi.org/10.1016/j.finel.2019.07.001
105 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials and Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed