Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (1): 227-243   https://doi.org/10.1007/s11709-020-0687-3
  本期目录
Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams
Qing JIANG1,2,3, Hanqin WANG1, Xun CHONG1,2(), Yulong FENG1,2, Xianguo YE1
1. School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
2. Anhui Key Laboratory of Civil Engineering and Materials, Hefei 230009, China
3. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
 全文: PDF(1968 KB)   HTML
Abstract

To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.

Key wordshigh-strength steel reinforcement    high-strength concrete    flexural behavior    crack width
收稿日期: 2019-12-06      出版日期: 2021-04-12
Corresponding Author(s): Xun CHONG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 227-243.
Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE. Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams. Front. Struct. Civ. Eng., 2021, 15(1): 227-243.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0687-3
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I1/227
Fig.1  
beam
no.
concrete
strength grade
prestressing ratio
λ
normalized reinforcement ratio ρs (%) mild steel reinforcement As, As'
(mm2)
Ap
(mm2)
Av1 Av2
PCB-1 C80 0.600 1.74 2DF 20 628 280 C8@200 C8@150
PCB-2 C80 0.694 1.64 4DF 12 452 280 C8@200 C8@150
PCB-3 C80 0.752 1.52 3DF 12 339 280 C8@200 C8@150
PCB-4 C80 0.600 2.61 3DF 20 942 420 C8@200 C8@120
PCB-5 C80 0.694 2.46 6DF 12 679 420 C8@200 C8@120
PCB-6 C80 0.773 2.21 4DF 12 452 420 C8@200 C8@120
PCB-7 C100 0.600 1.74 2DF 20 628 280 C8@200 C8@150
PCB-8 C100 0.694 1.64 4DF 12 452 280 C8@200 C8@150
PCB-9 C100 0.752 1.52 3DF 12 339 280 C8@200 C8@150
PCB-10 C100 0.600 2.61 3DF 20 942 420 C8@200 C8@120
PCB-11 C100 0.694 2.46 6DF 12 679 420 C8@200 C8@120
PCB-12 C100 0.773 2.21 4DF 12 452 420 C8@200 C8@120
Tab.1  
Fig.2  
reinforcement type diameter
(mm)
yield strength
fy or fpy
(MPa)
ultimate strength
fu or fpu
(MPa)
elongation ratio
A (%)
mild steel stirrup 8 381.0 514.3 22.0
mild steel longitudinal reinforcement 12 499.1 643.3 22.0
20 544.3 693.1 19.3
prestressed tendon 15.2 1828.5 1978.4 5.5
Tab.2  
Fig.3  
Fig.4  
Fig.5  
group no. beam
no.
Mcrt
(kN·m)
My?t
(kN·m)
Mp?t (kN·m) McrtM pt MytMp t Mcrc
(kN·m)
Mpc Mpc (kN·m) MptMp c
group 1 PCB-1 114.4 261.1 296.2 0.39 0.88 98.4 1.16 287.8 1.03
PCB-2 118.0 172.07 234.1 103.0 243.6
PCB-3 116.2 142.88 226.0 105.8 222.2
group 2 PCB-4 139.6 341.2 426.7 0.33 0.80 121.8 1.15 422.4 1.01
PCB-5 141.4 287.2 362.8 0.39 0.79 129.5 1.09 356.3 1.02
PCB-6 139.6 223.72 298.0 0.47 0.75 134.7 1.04 321.0 0.93
group 3 PCB-7 110.8 257.5 312.4 0.35 0.83 103.1 1.07 290.0 1.08
PCB-8 114.4 222.4 276.4 0.41 0.81 107.4 1.07 245.9 1.12
PCB-9 107.2 203.5 250.3 0.43 0.81 109.9 0.98 224.4 1.12
group 4 PCB-10 139.6 365.5 451.0 0.31 0.81 128.6 1.09 427.5 1.06
PCB-11 141.4 296.2 395.2 0.36 0.75 135.5 1.04 361.4 1.09
PCB-12 132.4 270.1 342.1 0.39 0.79 140.1 0.95 326.1 1.05
mean value 0.38 0.78 1.06 1.05
Tab.3  
group no. beam no. Δy (mm) Δu (mm) m
group 1 PCB-1 23.08 165.11 7.15
PCB-2
PCB-3
group 2 PCB-4 31.28 88.4 2.83
PCB-5 25.75 88.13 3.24
PCB-6 21.88 69.56 3.18
group 3 PCB-7 25.59 142.38 5.56
PCB-8 22.08 124.29 5.63
PCB-9 19.46 145.67 7.49
group 4 PCB-10 31.56 99.95 3.17
PCB-11 29.91 95.03 3.18
PCB-12 25.21 100.13 3.97
Tab.4  
Fig.6  
Beam
No.
fc
(MPa)
fy/ fpy
(MPa)
ρs
(%)
µ
Ashour [14]
B-N2 48.6 530 1.18 3.39
B-N3 48.6 530 1.77 2.5
B-N4 48.6 530 2.37 1.49
B-M2 78.5 530 1.18 3.88
B-H3 78.5 530 1.77 2.43
B-M4 78.5 530 2.37 1.84
B-H2 102.4 530 1.18 3.71
B-M3 102.4 530 1.77 2.7
B-H4 102.4 530 2.37 1.81
Hussien et al. [34]
B1-0.0* 72.0 470/1674 0.87 8.38
B2-0.7* 75.0 470/1674 1.21 7.93
B3-1.0* 76.0 470/1674 0.93 3.18
B4-0.0* 95.0 470/1674 0.87 8.04
B5-0.7* 97.0 470/1674 1.21 6.11
B6-1.0* 94.0 470/1674 0.93 4.93
Pam et al. [15]
B7 45.5 520–580 2.16 3.05
B8 44.2 520–580 2.46 2.79
B9 45.5 520–580 3.02 2.73
B10 38.3 520–580 3.50 2.03
B11 45.7 520–580 3.50 2.05
B12 40.5 520–580 4.02 1.87
B13 45.7 520–580 4.69 1.92
B14 81.3 520–580 1.64 5.54
B15 83.9 520–580 2.46 2.45
B16 88.7 520–580 2.46 2.78
B17 72.6 520–580 2.68 3.11
B18 75.9 520–580 4.02 1.83
B19 77.3 520–580 4.02 1.99
B20 69.1 520–580 4.69 1.81
Tab.5  
Fig.7  
Fig.8  
ωmaxt/ωmaxc GB 50010-2010 EN 1992-1-1: 2004
mean value 0.883 0.974
SD 0.211 0.368
CV 0.239 0.378
Tab.6  
method specimens no. lcrt/lcrc (Eq. (4)) lcrt/lcrc (Eq. (8))
mean value standard deviation CV mean value standard deviation CV
this study 12* 0.910 0.058 0.064 0.976 0.062 0.064
Li and Su [25] 24+ 8* 0.890 0.102 0.115 0.951 0.099 0.104
Gao et al. [26] 15 0.844 0.141 0.167 0.899 0.133 0.148
Jin et al. [27] 8 0.996 0.124 0.124 1.069 0.123 0.115
Xu [28] 11 1.127 0.110 0.098 1.218 0.103 0.085
Total 58+ 20* 0.953 0.107 0.114 1.023 0.104 0.103
Tab.7  
Fig.9  
Fig.10  
method mean value SD CV
GB50010–2010 0.883 0.211 0.239
modified equation 1.017 0.211 0.207
Tab.8  
Fig.11  
beam no. initial strain /10−6
PCB-1 6224
PCB-2 6272
PCB-3 6268
PCB-4 6225
PCB-5 6207
PCB-6 6189
PCB-7 6262
PCB-8 6316
PCB-9 6308
PCB-10 6279
PCB-11 6262
PCB-12 6247
Tab.9  
Concrete grade Ec (×104 MPa) u ft (MPa) fc (MPa) εc εu
C80 4.07 0.2 3.31 56.4 0.00224 0.02
C100 4.40 0.2 3.60 72.1 0.00240 0.02
Tab.10  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
1 American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318-14). Farmington Hills, MI: American Concrete Institute, 2011
2 Eurocode 2. Design of Concrete Structures: Part 1–1: General Rules and Rules for Buildings (BS EN 1992-1-1:2004). London: British Standards Institution, 2004
3 S N Zealand. Concrete Structures Standard, Part 1: The Design of Concrete Structures (NZS 3101). Wellington: New Zealand Standards Council, 2006
4 China Ministry of Construction. Code for Design of Concrete Structures (GB50010-2010). Beijing: China Architecture and Building Press, 2010
5 A M Zeyad, B A Tayeh, M O Yusuf. Strength and transport characteristics of volcanic pumice powder based high strength concrete. Construction & Building Materials, 2019, 216: 314–324
https://doi.org/10.1016/j.conbuildmat.2019.05.026
6 J S J Van Deventer, J L Provis, P Duxson. Technical and commercial progress in the adoption of geopolymer cement. Minerals Engineering, 2012, 29(3): 89–104
https://doi.org/10.1016/j.mineng.2011.09.009
7 V J L Gan, J C P Cheng, I M C Lo, C M Chan. Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings. Journal of Cleaner Production, 2017, 141: 825–836
https://doi.org/10.1016/j.jclepro.2016.09.126
8 P C Aïtcin. The durability characteristics of high performance concrete: A review. Cement and Concrete Composites, 2003, 25(4–5): 409–420
https://doi.org/10.1016/S0958-9465(02)00081-1
9 M Pecce, G Fabbrocino. Plastic rotation capacity of beams in normal and high-performance concrete. ACI Structural Journal, 1999, 96(2): 290–296
10 C H Lin, F S Lee. Ductility of high-performance concrete beams with high-strength lateral reinforcement. Structural Journal, 2001, 98(4): 600–608
11 P G Debernardi, M Taliano. On evaluation of rotation capacity for reinforced concrete beams. ACI Structural Journal, 2002, 99(3): 360–368
12 S H Chowdhury. Cracking and deflection behavior of partially prestressed high strength concrete beams. In: Australasian Structural Engineering Conference 2008: Engaging with Structural Engineering. Melbourne: Meeting Planners, 2008
13 R N Swamy, K L Anand. Structural behavior of high strength concrete beams. Building Science, 1974, 9(2): 131–141
https://doi.org/10.1016/0007-3628(74)90010-3
14 S A Ashour. Effect of compressive strength and tensile reinforcement ratio on flexural behavior of high-strength concrete beams. Engineering Structures, 2000, 22(5): 413–423
https://doi.org/10.1016/S0141-0296(98)00135-7
15 H J Pam, A K H Kwan, M S Islam. Flexural strength and ductility of reinforced normal-and high strength concrete beams. Proceedings of the Institution of Civil Engineers. Structures and Buildings, 2001, 146(4): 381–389
https://doi.org/10.1680/stbu.2001.146.4.381
16 M E Kaminska. High-strength concrete and steel interaction in RC members. Cement and Concrete Composites, 2002, 24(2): 281–295
https://doi.org/10.1016/S0958-9465(01)00011-7
17 S M R Lopes, L F A Bernardo. Plastic rotation capacity of high-strength concrete beams. Materials and Structures, 2003, 36(1): 22–31
https://doi.org/10.1007/BF02481567
18 M Reza Ghasemi, A Shishegaran. Role of slanted reinforcement on bending capacity SS beams. Vibroengineering Procedia, 2017, 11: 195–199
https://doi.org/10.21595/vp.2017.18544
19 A Shishegaran, M Reza Ghasemi. Performance of a novel bent-up bars system not interacting with concrete. Frontiers of Structural and Civil Engineering, 2019, 13(6): 1301–1315
https://doi.org/10.1007/s11709-019-0552-4
20 T Rabczuk, J Eibl. Numerical analysis of prestressed concrete beams using a coupled element free Galerkin/finite element approach. International Journal of Solids and Structures, 2004, 41(3–4): 1061–1080
https://doi.org/10.1016/j.ijsolstr.2003.09.040
21 T Rabczuk, G Zi. Numerical Fracture analysis of prestressed concrete beams. International Journal of Concrete Structures and Materials, 2008, 2(2): 153–160
https://doi.org/10.4334/IJCSM.2008.2.2.153
22 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
23 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
24 M Mohammadhassani, M Z Jumaat, M Jameel. Experimental investigation to compare the modulus of rupture in high strength self compacting concrete deep beams and high strength concrete normal beams. Construction & Building Materials, 2012, 30: 265–273
https://doi.org/10.1016/j.conbuildmat.2011.12.004
25 Z H Li, X Z Su. Analysis of crack patterns of 500MPa reinforced concrete beams. Advanced Materials Research, 2013, 790: 120– 124
https://doi.org/10.4028/www.scientific.net/AMR.790.120
26 R P Gao, H X Qiu, T Hu, Z Ding, Z Lan. Experimental research on crack width of HRB500 steel bars RC beams. Industrial Construction, 2010, 40(3): 66–70 (in Chinese)
27 W L Jin, C H Lu, H L Wang, R D Yan. Experiment and calculation of crack width of reinforced concrete beams with 500MPa steel bars. China Civil Engineering Journal, 2011, 44(3): 16–23 (in Chinese)
28 F B Xu. Experimental and theoretical research on flexural behavior of reinforced concrete beams with HRB500 bars. Dissertation for the Doctoral Degree. Changsha: Hunan University, 2007 (in Chinese)
29 S K Padmarajaiah, A Ramaswamy. Crack-width prediction for high-strength concrete fully and partially prestressed beam specimens containing steel fibers. ACI Structural Journal, 2001, 98(6): 852–861
30 S K Padmarajaiah, A Ramaswamy. Flexural strength predictions of steel fiber reinforced high-strength concrete in fully/partially prestressed beam specimens. Cement and Concrete Composites, 2004, 26(4): 275–290
https://doi.org/10.1016/S0958-9465(02)00121-X
31 China Ministry of Construction. Standard for Test Method of Mechanical Properties on Ordinary Concrete (GB/T50081-2002). Beijing: China Architecture & Building Press, 2003
32 General Administration of Quality Supervision.Inspection and Quarantine of the People’s Republic of China. Metallic Materials-Tensile Testing—Part 1: Method of Test at Room Temperature (GB/T228.1-2010). Beijing: Standards Press of China, 2010
33 Z H Guo, X D Shi. Theory and Analysis of Reinforced Concrete. Beijing: Tsinghua University Press, 2003, 163–337 (in Chinese)
34 O F Hussien, T H K Elafandy, A A Abdelrahman, S A Abdel Baky, E A Nasr. Behavior of bonded and unbonded prestressed normal and high strength concrete beams. HBRC Journal, 2012, 8(3): 239–251
https://doi.org/10.1016/j.hbrcj.2012.10.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed