Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2020, Vol. 14 Issue (6): 1285-1298   https://doi.org/10.1007/s11709-020-0691-7
  本期目录
Multiscale computation on feedforward neural network and recurrent neural network
Bin LI, Xiaoying ZHUANG()
Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(4444 KB)   HTML
Abstract

Homogenization methods can be used to predict the effective macroscopic properties of materials that are heterogenous at micro- or fine-scale. Among existing methods for homogenization, computational homogenization is widely used in multiscale analyses of structures and materials. Conventional computational homogenization suffers from long computing times, which substantially limits its application in analyzing engineering problems. The neural networks can be used to construct fully decoupled approaches in nonlinear multiscale methods by mapping macroscopic loading and microscopic response. Computational homogenization methods for nonlinear material and implementation of offline multiscale computation are studied to generate data set. This article intends to model the multiscale constitution using feedforward neural network (FNN) and recurrent neural network (RNN), and appropriate set of loading paths are selected to effectively predict the materials behavior along unknown paths. Applications to two-dimensional multiscale analysis are tested and discussed in detail.

Key wordsmultiscale method    constitutive model    feedforward neural network    recurrent neural network
收稿日期: 2020-02-19      出版日期: 2021-01-12
Corresponding Author(s): Xiaoying ZHUANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2020, 14(6): 1285-1298.
Bin LI, Xiaoying ZHUANG. Multiscale computation on feedforward neural network and recurrent neural network. Front. Struct. Civ. Eng., 2020, 14(6): 1285-1298.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-020-0691-7
https://academic.hep.com.cn/fsce/CN/Y2020/V14/I6/1285
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
material E (MPa) Et (MPa) ν σs (MPa)
M 1× 105 2× 104 0.3 200
B 1× 105 1× 104 0.3 100
Tab.1  
Fig.11  
experiment number layers number learning rate mini-batch size dropout rate accuracy
1 4 1e2 16 0.75 0.767
2 4 1e3 32 0.85 0.838
3 4 1e4 64 0.95 0.856
4 5 1e2 32 0.95 0.866
5 5 1e3 64 0.75 0.866
6 5 1e4 16 0.85 0.870
7 6 1e2 64 0.85 0.867
8 6 1e3 16 0.95 0.933
9 6 1e4 32 0.75 0.895
parameter 6 1e3 32 0.95
Tab.2  
Fig.12  
Fig.13  
experiment number GRU layers FNN layers learning rate dropout rate accuracy
1 1 1 1e3 0.75 0.817
2 1 2 1e4 0.85 0.800
3 1 3 1e5 0.95 0.681
4 2 1 1e4 0.95 0.840
5 2 2 1e5 0.75 0.660
6 2 3 1e3 0.85 0.938
7 3 1 1e5 0.85 0.521
8 3 2 1e3 0.95 0.949
9 3 3 1e4 0.75 0.828
parameter 2 3 1e3 0.95
Tab.3  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
FEM data acquisition FNN training FNN prediction RNN training RNN prediction
2400 s 48000 s (2400*200 s) 1089 s 3 s 1846.8 s 4 s
Tab.4  
Fig.19  
Fig.20  
FEM data acquisition FNN training FNN prediction RNN training RNN prediction
2160 s 43200 s (2160*200 s) 1089 s 4.8 s 1846.8 s 4.2 s
Tab.5  
1 F Fritzen, S Marfia, V Sepe. Reduced order modeling in nonlinear homogenization: A comparativestudy. Computers & Structures, 2015, 157: 114–131
https://doi.org/10.1016/j.compstruc.2015.05.012
2 P Kerfriden, O Goury, T Rabczuk, S P A Bordas. A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2013, 256: 169–188
https://doi.org/10.1016/j.cma.2012.12.004
3 J C Michel, P Suquet. Nonuniform transformation field analysis. International Journal of Solids and Structures, 2003, 40(25): 6937–6955
https://doi.org/10.1016/S0020-7683(03)00346-9
4 S Roussette, J C Michel, P Suquet. Nonuniform transformation field analysis of elastic-viscoplastic composites. Composites Science and Technology, 2009, 69(1): 22–27
https://doi.org/10.1016/j.compscitech.2007.10.032
5 Z Liu, M Bessa, W K Liu. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 319–341
https://doi.org/10.1016/j.cma.2016.04.004
6 Z Liu, M Fleming, W K Liu. Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 547–577
https://doi.org/10.1016/j.cma.2017.11.005
7 M Geers, J Yvonnet. Multiscale modeling of microstructure-property relations. MRS Bulletin, 2016, 41(08): 610–616
https://doi.org/10.1557/mrs.2016.165
8 Z Liu, C Wu, M Koishi. A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 1138–1168
https://doi.org/10.1016/j.cma.2018.09.020
9 J Ghaboussi, J Jr Garrett, X Wu. Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics, 1991, 117(1): 132–153
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
10 J Ghaboussi, D A Pecknold, M Zhang, R M Haj-Ali. Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering, 1998, 42(1): 105–126
https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<105::AID-NME356>3.0.CO;2-V
11 N Huber, C Tsakmakis. Determination of constitutive properties from spherical indentation data using neural networks. Part I: The case of pure kinematic hardening in plasticity laws. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1569–1588
https://doi.org/10.1016/S0022-5096(98)00109-4
12 N Huber, C Tsakmakis. Determination of constitutive properties from spherical indentation data using neural networks. Part II: Plasticity with nonlinear isotropic and kinematic hardening. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1589–1607
https://doi.org/10.1016/S0022-5096(98)00110-0
13 S Pernot, C H Lamarque. Application of neural networks to the modelling of some constitutive laws. Neural Networks, 1999, 12(2): 371–392
https://doi.org/10.1016/S0893-6080(98)00115-4
14 R Haj-Ali, D A Pecknold, J Ghaboussi, G Z Voyiadjis. Simulated micromechanical models using artificial neural networks. Journal of Engineering Mechanics, 2001, 127(7): 730–738
https://doi.org/10.1061/(ASCE)0733-9399(2001)127:7(730)
15 D E Rumelhart, G E Hinton, R J Williams. Learning Internal Representations by Error Propagation. Technical Report. California University San Diego La Jolla Inst for Cognitive Science. 1985
16 D M Dimiduk, E A Holm, S R Niezgoda. Perspectives on the impact of machine learning, deep learning, and artificial intelligence on materials, processes, and structures engineering. Integrating Materials and Manufacturing Innovation, 2018, 7(3): 157–172
https://doi.org/10.1007/s40192-018-0117-8
17 J F Unger, C Könke. Coupling of scales in a multiscale simulation using neural networks. Computers & Structures, 2008, 86(21–22): 1994–2003
https://doi.org/10.1016/j.compstruc.2008.05.004
18 M Bessa, R Bostanabad, Z Liu, A Hu, D W Apley, C Brinson, W Chen, W K Liu. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633–667
https://doi.org/10.1016/j.cma.2017.03.037
19 B Le, J Yvonnet, Q C He. Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering, 2015, 104(12): 1061–1084
https://doi.org/10.1002/nme.4953
20 M Lefik, D Boso, B Schrefler. Artificial neural networks in numerical modelling of composites. Computer Methods in Applied Mechanics and Engineering, 2009, 198(21–26): 1785–1804
https://doi.org/10.1016/j.cma.2008.12.036
21 J H Zhu, M M Zaman, S A Anderson. Modeling of soil behavior with a recurrent neural network. Canadian Geotechnical Journal, 1998, 35(5): 858–872
https://doi.org/10.1139/t98-042
22 K Wang, W Sun. A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Computer Methods in Applied Mechanics and Engineering, 2018, 334: 337–380
https://doi.org/10.1016/j.cma.2018.01.036
23 F Feyel, J L Chaboche. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3–4): 309–330
https://doi.org/10.1016/S0045-7825(99)00224-8
24 H Zhu, Q Wang, X Zhuang. A nonlinear semi-concurrent multiscale method for fractures. International Journal of Impact Engineering, 2016, 87: 65–82
https://doi.org/10.1016/j.ijimpeng.2015.06.022
25 J Fish. Practical Multiscaling. 1st ed. UK: John Wiley & Sons, 2014
26 Z Yuan, J Fish. Toward realization of computational homogenization in practice. International Journal for Numerical Methods in Engineering, 2008, 73(3): 361–380
https://doi.org/10.1002/nme.2074
27 K Cho, B Van Merriënboer, D Bahdanau, Y Bengio. On the properties of neural machine translation: Encoder-decoder approaches. 2014, arXiv preprint arXiv:1409.1259
28 S Jung, J Ghaboussi. Neural network constitutive model for rate-dependent materials. Computers & Structures, 2006, 84(15–16): 955–963
https://doi.org/10.1016/j.compstruc.2006.02.015
29 M Lefik, B Schrefler. Artificial neural network as an incremental non-linear constitutive model for a finite element code. Computer Methods in Applied Mechanics and Engineering, 2003, 192(28–30): 3265–3283
https://doi.org/10.1016/S0045-7825(03)00350-5
30 J Zhu, D A Chew, S Lv, W Wu. Optimization method for building envelope design to minimize carbon emissions of building operational energy consumption using orthogonal experimental design (OED). Habitat International, 2013, 37: 148–154
https://doi.org/10.1016/j.habitatint.2011.12.006
31 T Furukawa, G Yagawa. Implicit constitutive modelling for viscoplasticity using neural networks. International Journal for Numerical Methods in Engineering, 1998, 43(2): 195–219
https://doi.org/10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
32 T Furukawa, M Hoffman. Accurate cyclic plastic analysis using a neural network material model. Engineering Analysis with Boundary Elements, 2004, 28(3): 195–204
https://doi.org/10.1016/S0955-7997(03)00050-X
33 G J Yun, J Ghaboussi, A S Elnashai. A new neural network-based model for hysteretic behavior of materials. International Journal for Numerical Methods in Engineering, 2008, 73(4): 447–469
https://doi.org/10.1002/nme.2082
34 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112790
https://doi.org/10.1016/j.cma.2019.112790
35 V M Nguyen-Thanh, X Zhuang, T Rabczuk. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics. A, Solids, 2020, 80: 103874
https://doi.org/10.1016/j.euromechsol.2019.103874
36 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
37 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed