Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (5): 1238-1248   https://doi.org/10.1007/s11709-021-0695-y
  本期目录
Crack propagation with different radius local random damage based on peridynamic theory
Jinhai ZHAO1,2,3(), Li TAN3, Xiaojing DOU3,4
1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 3100015, China
2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
3. College of Civil Engineering, Tongji University, Shanghai 200092, China
4. Shanghai Baoye Group Corp., Ltd., Shanghai 200941, China
 全文: PDF(47169 KB)   HTML
Abstract

Drawing from the advantages of Classical Mechanics, the peridynamic theory can clarify the crack propagation mechanism by an integral solution without initially setting the factitious crack and crack path. This study implements the peridynamic theory by subjecting bilateral notch cracked specimens to the conditions of no local damage, small radius local damage, and large radius local damage. Moreover, to study the effects of local stochastic damage with different radii on the crack propagation path and Y-direction displacement, a comparison and contact methodology was adopted, in which the crack propagation paths under uniaxial tension and displacement in the Y-direction were compared and analyzed. This method can be applied to steel structures under similar local random damage conditions.

Key wordsperidynamics    stochastic damage    bilateral notch crack
收稿日期: 2020-02-20      出版日期: 2021-11-29
Corresponding Author(s): Jinhai ZHAO   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1238-1248.
Jinhai ZHAO, Li TAN, Xiaojing DOU. Crack propagation with different radius local random damage based on peridynamic theory. Front. Struct. Civ. Eng., 2021, 15(5): 1238-1248.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0695-y
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I5/1238
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
1 Suresh, S. Material Fatigue. Beijing: National Defense Industry Press, 1999
2 A A Griffith. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1921, 221( 582−593): 163– 198
3 P Paris, F Erdogan. A critical analysis of crack propagation laws. Journal of Basic Engineering, 1963, 85( 4): 528– 533
https://doi.org/10.1115/1.3656900
4 J R Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968, 35( 2): 379– 386
https://doi.org/10.1115/1.3601206
5 A Gonzalez-Herrera, J Zapatero. Tri-dimensional numerical modelling of plasticity induced fatigue crack closure. Engineering Fracture Mechanics, 2008, 75( 15): 4513– 4528
https://doi.org/10.1016/j.engfracmech.2008.04.024
6 R C McClung, H Sehitoglu. On the finite element analysis of fatigue crack closure—1. Basic modeling issues. Engineering Fracture Mechanics, 1989, 33( 2): 237– 252
https://doi.org/10.1016/0013-7944(89)90027-1
7 F Amiri, D Millán, M Arroyo, M Silani, T Rabczuk. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312 : 254– 275
https://doi.org/10.1016/j.cma.2016.02.011
8 F Amiri, D Millán, Y Shen, T Rabczuk, M Arroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69 : 102– 109
https://doi.org/10.1016/j.tafmec.2013.12.002
9 P Areias, T Rabczuk, Sá J C de. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58( 6): 1003– 1018
https://doi.org/10.1007/s00466-016-1328-5
10 T Q Thai, T Rabczuk, Y Bazilevs, G Meschke. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304 : 584– 604
https://doi.org/10.1016/j.cma.2016.02.031
11 P R Budarapu, R Gracie, S P A Bordas, T Rabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53( 6): 1129– 1148
https://doi.org/10.1007/s00466-013-0952-6
12 P R Budarapu, R Gracie, S W Yang, X Zhuang, T Rabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69 : 126– 143
https://doi.org/10.1016/j.tafmec.2013.12.004
13 M Silani, H Talebi, A M Hamouda, T Rabczuk. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15 : 18– 23
https://doi.org/10.1016/j.jocs.2015.11.007
14 H Talebi, M Silani, T Rabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80 : 82– 92
https://doi.org/10.1016/j.advengsoft.2014.09.016
15 M Silani, S Ziaei-Rad, H Talebi, T Rabczuk. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74 : 30– 38
https://doi.org/10.1016/j.tafmec.2014.06.009
16 H Talebi, M Silani, S P A Bordas, P Kerfriden, T Rabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53( 5): 1047– 1071
https://doi.org/10.1007/s00466-013-0948-2
17 H Talebi, M Silani, S P A Bordas, P Kerfriden, T Rabczuk. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11( 6): 527– 541
https://doi.org/10.1615/IntJMultCompEng.2013005838
18 T Belytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45( 5): 601– 620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
19 C Daux, N Moës, J Dolbow, N Sukumar, T Belytschko. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48( 12): 1741– 1760
https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
20 X Fang, F Jin, J Wang. Cohesive crack model based on extended finite element method. Journal of Tsinghua University, 2007, 47( 3): 344– 347
21 Z Zhuang, B B Cheng. Equilibrium state of mode-I sub-interfacial crack growth in bi-materials. International Journal of Fracture, 2011, 170( 1): 27– 36
https://doi.org/10.1007/s10704-011-9599-5
22 S A Silling, E Askari. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83( 17−18): 1526– 1535
https://doi.org/10.1016/j.compstruc.2004.11.026
23 S A Silling, F Bobaru. Peridynamic modeling of membranes and fibers. International Journal of Non-linear Mechanics, 2005, 40( 2−3): 395– 409
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
24 M R Ayatollahi, M R M Aliha. Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 2009, 76( 11): 1563– 1573
https://doi.org/10.1016/j.engfracmech.2009.02.016
25 J T Foster, S A Silling, W Chen. An energy based failure criterion for use with peridynamic states. International Journal for Multiscale Computational Engineering, 2011, 9( 6): 675– 688
https://doi.org/10.1615/IntJMultCompEng.2011002407
26 Zeng S. Bilateral crack growth behavior of Q345 steel under uniaxial tensile load. Thesis for the Master’s Degree. Nanning: Guangxi University, 2014 (in Chinese).
27 X Gu, X Zhou. Numerical simulation of propagation and coalescence of cracks using peridynamic theory. Rock and Soil Mechanics, 2017, 38( 2): 610– 616
28 H Ren, X Zhuang, Y Cai, T Rabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108( 12): 1451– 1476
https://doi.org/10.1002/nme.5257
29 M Silani, H Talebi, A M Hamouda, T Rabczuk. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15 : 18– 23
https://doi.org/10.1016/j.jocs.2015.11.007
30 H Talebi, M Silani, T Rabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80 : 82– 92
https://doi.org/10.1016/j.advengsoft.2014.09.016
31 S Feng, Q Zhang, D Huang. Peridynamics modeling of failure process of concrete structure subjected to impact loading. Engineering Mechanics, 2012, 29( Sup 1): 12– 15
32 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199( 37−40): 2437– 2455
https://doi.org/10.1016/j.cma.2010.03.031
33 T Rabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196( 29−30): 2777– 2799
https://doi.org/10.1016/j.cma.2006.06.020
34 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61( 13): 2316– 2343
https://doi.org/10.1002/nme.1151
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed