Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (1): 244-252   https://doi.org/10.1007/s11709-021-0696-x
  本期目录
Application of coupled multi-body dynamics–discrete element method for optimization of particle damper for cable vibration attenuation
Danhui DAN1,2, Qianqing WANG1(), Jiongxin GONG1
1. Department of Bridge Engineering, School of Civil Engineering, Tongji University, Shanghai 200092, China
2. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China
 全文: PDF(783 KB)   HTML
Abstract

With the application of the particle damping technology to cable vibration attenuation, the rootless cable damper overcomes the limit in installation height of existing dampers. Damping is achieved through energy dissipation by collisions and friction. In this paper, a coupled multi-body dynamics–discrete element method is proposed to simulate the damping of the damper–cable system under a harmonic excitation. The analyses are done by combining the discrete element method in EDEM and multi-body dynamics in ADAMS. The simulation results demonstrate the damping efficiency of rootless particle damper under different excitations and reveal the influence of the design parameters on its performance, including the filling ratio, particle size, coefficient of restitution, and coefficient of friction.

Key wordsgranular material    vibration control    discrete element method    particle damper    cable vibration
收稿日期: 2019-11-30      出版日期: 2021-04-12
Corresponding Author(s): Qianqing WANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 244-252.
Danhui DAN, Qianqing WANG, Jiongxin GONG. Application of coupled multi-body dynamics–discrete element method for optimization of particle damper for cable vibration attenuation. Front. Struct. Civ. Eng., 2021, 15(1): 244-252.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0696-x
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I1/244
Fig.1  
object parameter type parameter name and unit value
particle inherent parameter density (kg/m3) 7850
elastic modulus (MPa) 2 × 105
Poisson’s ratio 0.3
particle-to-particle
contact parameter
coefficient of restitution 0.2
coefficient of sliding friction 0.5
coefficient of rolling friction 0.01
container inherent parameter elastic modulus (MPa) 2 × 105
Poisson’s ratio 0.3
coefficient of restitution 0.2
particle-to-container
contact parameter
coefficient of sliding friction 0.5
coefficient of rolling friction 0.01
Tab.1  
length (m) unit mass (kg/m) cable force (kN) cross-sectional area (m2) elastic modulus (MPa)
100 25.9 3162 6.273 × 10−3 2 × 105
Tab.2  
parameter name direction value
stiffness coefficient axial direction (N/mm) 1.3 × 104
tangential direction (N/mm) 1 × 104
flexural rigidity (N?mm/rad) 8.46 × 106
tension force axial direction (N) 3.162 × 106
Tab.3  
Fig.2  
Fig.3  
mode ADAMS model string theory deviation
1 1.29 1.24 0.04
2 2.59 2.47 0.05
3 3.88 3.71 0.04
Tab.4  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 A M Abdel-Ghaffar, M A Khalifa. Importance of cable vibration in dynamics of cable-stayed bridges. Journal of Engineering Mechanics, 1991, 117(11): 2571–2589
https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2571)
2 D Dan, L Ge, X Yan. Identification of moving loads based on the information fusion of weigh-in-motion system and multiple camera machine vision. Measurement, 2019, 144: 155–166
https://doi.org/10.1016/j.measurement.2019.05.042
3 Y F Duan, Y Q Ni, J M Ko. State-derivative feedback control of cable vibration using semiactive magnetorheological dampers. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(6): 431–449
https://doi.org/10.1111/j.1467-8667.2005.00396.x
4 F Weber, C Boston. Energy based optimization of viscous–friction dampers on cables. Smart Materials and Structures, 2010, 19(4): 045025
https://doi.org/10.1088/0964-1726/19/4/045025
5 J Li, Z Liu, Z Liu, L Huang, C Zhou, X Liu, W Zhu. Electromechanical characteristics and numerical simulation of a new smaller magnetorheological fluid damper. Mechanics Research Communications, 2018, 92: 81–86
https://doi.org/10.1016/j.mechrescom.2018.07.010
6 B M Pacheco, Y Fujino, A Sulekh. Estimation curve for modal damping in stay cables with viscous damper. Journal of Structural Engineering, 1993, 119(6): 1961–1979
https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
7 D Dan, J Gong, Z Chen, L. CN Sun Patent, CN10316-1124A, 2013-06-19
8 Z Luo, W Yan, W Xu, Q Zheng, B Wang. Experimental research on the multilayer compartmental particle damper and its application methods on long-period bridge structures. Frontiers of Structural and Civil Engineering, 2019, 13(4): 751–766
https://doi.org/10.1007/s11709-018-0509-z
9 W T Wu, N Aubry, M Massoudi. Flow of granular materials modeled as a non-linear fluid. Mechanics Research Communications, 2013, 52: 62–68
https://doi.org/10.1016/j.mechrescom.2013.06.008
10 Z Lu, X Lu, H Jiang, S F. Masri. Discrete element method simulation and experimental validation of particle damper system. Engineering Computations, 2014, 31(4): 810–823
https://doi.org/10.1108/EC-08-2012-0191
11 P A Cundall, O D L Strack. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47–65
12 N Ahmad, R Ranganath, A Ghosal. Modeling and experimental study of a honeycomb beam filled with damping particles. Journal of Sound and Vibration, 2017, 391: 20–34
https://doi.org/10.1016/j.jsv.2016.11.011
13 Y Hou, L Wang. Multiscale mechanical modeling of hydrated cement paste under tensile load using the combined DEM-MD method. Frontiers of Structural and Civil Engineering, 2017, 11(3): 270–278
https://doi.org/10.1007/s11709-017-0408-8
14 Y C Zhou, B D Wright, R Y Yang, B H Xu, A B Yu. Rolling friction in the dynamic simulation of sandpile formation. Physica A, 1999, 269(2–4): 536–553
https://doi.org/10.1016/S0378-4371(99)00183-1
15 R D MindlinH , Deresiewicz . Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 1953, 9: 327–344
16 H Sakaguchi, E Ozaki, T Igarashi. Plugging of the flow of granular materials during the discharge from a silo. International Journal of Modern Physics B, 1993, 7: 1949–1963
17 Y Tsuji, T Tanaka, T Ishida. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology, 1992, 71(3): 239–250
https://doi.org/10.1016/0032-5910(92)88030-L
18 F Weber, H Distl. Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers. Structural Control and Health Monitoring, 2015, 22(2): 237–254
https://doi.org/10.1002/stc.1671
19 K A Mcisaac. A hierarchical approach to motion planning with applications to an underwater eel-like robot. Dissertation for the Doctoral Degree. Philadelphia, PA: University of Pennsylvania, 2001
20 D Dan, F Han, W Cheng, B Xu. Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Structural Control and Health Monitoring, 2019, 26(10): e2435
https://doi.org/10.1002/stc.2435
21 F Han, D Dan, W Cheng, J Zang. A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Applied Mathematical Modelling, 2020, 80: 911–928
https://doi.org/10.1016/j.apm.2019.11.008
22 N Hoang, Y Fujino. Multi-mode control performance of nonlinear dampers in stay cable vibrations. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 2009, 16(7–8): 860–868
https://doi.org/10.1002/stc.364
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed