Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (4): 834-850   https://doi.org/10.1007/s11709-021-0743-7
  本期目录
Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber reinforced polymer composite bar
Chao WU1,2,3, Xiongjun HE1,2, Li HE4(), Jing ZHANG5, Jiang WANG6
1. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
2. Hubei Province Highway Engineering Research Center, Wuhan 430063, China
3. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
4. School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China
5. China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd, Wuhan 430056, China
6. WISDRI Engineering & Research Incorporation Limited, Wuhan 430023, China
 全文: PDF(43828 KB)   HTML
Abstract

The concept of steel sheet glass fiber reinforced polymer (GFRP) composite bar (SSGCB) was put forward. An optimization plan was proposed in the combined form of SSGCB. The composite principle, material selection, and SSGCB preparation technology have been described in detail. Three-dimensional finite element analysis was adopted to perform the combination form optimization of different steel core structures and different steel core contents based on the mechanical properties. Mechanical tests such as uniaxial tensile, shear, and compressive tests were carried out on SSGCB. Parametric analysis was conducted to investigate the influence of steel content on the mechanical properties of SSGCB. The results revealed that the elastic modulus of SSGCB had improvements and increased with the rise of steel content. Shear strength was also increased with the addition of steel content. Furthermore, the yield state of SSGCB was similar to the steel bar, both of which indicated a multi-stage yield phenomenon. The compressive strength of SSGCB was lower than that of GFRP bars and increased with the increase of the steel core content. Stress-strain curves of SSGCB demonstrated that the nonlinear-stage characteristics of SSGCB-8 were much more obvious than other bars.

Key wordssteel sheet GFRP composite bar    combination form    numerical modeling    mechanical properties test    strength
收稿日期: 2020-12-07      出版日期: 2021-09-29
Corresponding Author(s): Li HE   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(4): 834-850.
Chao WU, Xiongjun HE, Li HE, Jing ZHANG, Jiang WANG. Combination form analysis and experimental study of mechanical properties on steel sheet glass fiber reinforced polymer composite bar. Front. Struct. Civ. Eng., 2021, 15(4): 834-850.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0743-7
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I4/834
Fig.1  
Fig.2  
Fig.3  
materials density (kg/m 3) yield strength (MPa) tensile strength (MPa) elastic modulus (GPa) Poisson ratio
glass fiber 2550 744 45 0.28
304 steel 7800 257 540 193 0.30
Q345 7800 345 675 206 0.28
Tab.1  
Fig.4  
specimen diameter (mm) steel core content steel core section form steel core quantity
SSGCB-6 18 14.2% thin steel sheet 6
SFCB-1 18 14.2% round bar 1
SFCB-6 18 14.2% steel wire 6
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
no. LS VMS (MPa) YP (MPa) P (MPa) BD (mm) STBD (mm) ULC (kN)
SSGCB-6-G 0.82857 744 744 563 18 28 168.53
SSGCB-6-S 0.82857 291.94 540
SFCB-1-G 0.82638 744 744 563 18 28 168.09
SFCB-1-S 0.82638 290.79 540
SFCB-6-G 0.82477 744 744 563 18 28 167.76
SFCB-6-S 0.82477 290.61 540
Tab.3  
Fig.9  
Fig.10  
specimen ID. diameter (mm) sheet size (mm) sheet number steel content
SSGCB-4 18 1 × 5 4 9.4%
SSGCB-6 18 1 × 5 6 14.2%
SSGCB-8 18 1 × 5 8 18.9%
Tab.4  
Fig.11  
Fig.12  
Fig.13  
specimen ID D (mm) SC (%) SSN TTS STS CTS
SSGCB-0 18 0 0 4 4 5
SSGCB-4 18 9.4 4 4 4 5
SSGCB-6 18 14.2 6 4 4 5
SSGCB-8 18 18.9 8 4 4 5
Tab.5  
Fig.14  
Fig.15  
Fig.16  
test parameters no. specimen identification
SSGCB-0 SSGCB-4 SSGCB-6 SSGCB-8
tension elastic modulus (GPa) 43.7 57.5 61.7 67.8
45.3 54.7 60.5 66
44.2 52.9 66.2 65.7
46.1 53.3 62.3 69.2
tensile strength (MPa) 793.1 731.3 674.9 660.8
815.4 739.5 686.1 671.3
782.3 688.7 696.4 680.6
806.5 706.5 671.9 640.9
shear load (kN) 88.3 97.2 106.0 107.5
92.5 95.4 101.6 110.8
86.2 96.3 102.3 102.5
88.4 98.6 97.6 113.7
shear strength (MPa) 173.5 191.1 208.3 211.3
181.8 187.6 199.8 217.8
169.5 189.3 201.1 201.5
173.7 193.9 191.9 223.5
compression ultimate load 77.6 75.3 75.9 79.6
79.1 73.4 71.8 81.9
78.3 69.2 79.4 78.8
72.8 68.3 79.7 83.9
79.2 73.8 81.4 71.6
compressive strength (MPa) 386.1 296.1 298.4 313.0
311.0 288.6 282.3 322.0
307.9 272.1 312.2 309.8
286.2 268.5 313.2 329.9
311.4 290.2 320.0 281.5
Tab.6  
Fig.17  
Fig.18  
1 S Garcia, A E Naaman, J Pera. Experimental investigation on the potential use of poly (vinyl alcohol) short fibers in fiber-reinforced cement-based composites. Materials and Structures, 1997, 30( 1): 43– 52
https://doi.org/10.1007/BF02498739
2 V M Karbhari, L Zhao. Use of composites for 21st century civil infrastructure. Computer Methods in Applied Mechanics and Engineering, 2000, 185( 2–4): 433– 454
https://doi.org/10.1016/S0045-7825(99)90270-0
3 H Z Wang, A Belarbi. Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Construction & Building Materials, 2011, 25( 5): 2391– 2401
https://doi.org/10.1016/j.conbuildmat.2010.11.040
4 G Ma, H Li, Z Duan. Repair effects and acoustic emission technique-based fracture evaluation for predamaged concrete columns confined with fiber-reinforced polymers. Journal of Composites for Construction, 2012, 16( 6): 626– 639
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000309
5 L Koutas, T C Triantafillou. Use of anchors in shear strengthening of reinforced concrete T-beams with FRP. Journal of Composites for Construction, 2013, 17( 1): 101– 107
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000316
6 X J He, J N Yang, C E Bakis. Tensile strength characteristics of GFRP bars in concrete beams with work cracks under sustained loading and severe environments. Journal of Wuhan University of Technology, 2013, 28( 5): 934– 937
https://doi.org/10.1007/s11595-013-0796-0
7 W R Yang, X J He, L Dai, X Zhao, F Shen. Fracture performance of GFRP bars embedded in concrete beams with cracks in an alkaline environment. Journal of Composites for Construction, 2016, 20( 6): 04016040–
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000688
8 W R Yang, X J He, L Dai. Damage behaviour of concrete beams reinforced with GFRP bars. Composite Structures, 2017, 161 : 173– 186
https://doi.org/10.1016/j.compstruct.2016.11.041
9 S A Sheikh, Z Kharal. Replacement of steel with GFRP for sustainable reinforced concrete. Construction & Building Materials, 2018, 160 : 767– 774
https://doi.org/10.1016/j.conbuildmat.2017.12.141
10 M Al-Rubaye, A Manalo, O Alajarmeh, W Ferdous, W Lokuge, B Benmokrane, A Edoo. Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems. Composite Structures, 2020, 236 : 111836–
https://doi.org/10.1016/j.compstruct.2019.111836
11 O S AlAjarmeh, A C Manalo, B Benmokrane, K Karunasena, W Ferdous, P Mendis. Hollow concrete columns: Review of structural behavior and new designs using GFRP reinforcement. Engineering Structures, 2020, 203 : 109829–
https://doi.org/10.1016/j.engstruct.2019.109829
12 W Ferdous, A Manalo, O AlAjarmeh, A A Mohammed, C Salih, P Yu, M Mehrinejad Khotbehsara, P Schubel. Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway track. Engineering Structures, 2021, 229 : 111627–
https://doi.org/10.1016/j.engstruct.2020.111627
13 A Manalo, G Maranan, B Benmokrane, P Cousin, O Alajarmeh, W Ferdous, R Liang, G Hota. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cement and Concrete Composites, 2020, 109 : 103564–
https://doi.org/10.1016/j.cemconcomp.2020.103564
14 B Benmokrane, P Wang, T M Ton-That, H Rahman, J F Robert. Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment. Journal of Composites for Construction, 2002, 6( 3): 143– 153
https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(143)
15 C E Bakis, L C Bank, V L Brown, E Cosenza, J F Davalos, J J Lesko, A Machida, S H Rizkalla, T C Triantafillou. Fiber-reinforced polymer composites for construction-state-of-the-art review. Journal of Composites for Construction, 2002, 6( 2): 73– 87
https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)
16 F O Sonmez. Optimum design of composite structures: A literature survey (1969−2009). Journal of Reinforced Plastics and Composites, 2017, 36( 1): 3– 39
https://doi.org/10.1177/0731684416668262
17 A Nanni, M J Henneke, T Okamoto. Behaviour of concrete beams with hybrid reinforcement. Construction & Building Materials, 1994, 8( 2): 89– 95
https://doi.org/10.1016/S0950-0618(09)90017-4
18 W Sun, H S Chen, X Luo, H P Qian. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete. Cement and Concrete Research, 2001, 31( 4): 595– 601
https://doi.org/10.1016/S0008-8846(00)00479-8
19 Y Kitane, A J Aref, G C Lee. Static and fatigue testing of hybrid fiber-reinforced polymer-concrete bridge superstructure. Journal of Composites for Construction, 2004, 8( 2): 182– 190
https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(182)
20 D Chen, R El-Hacha. Behaviour of hybrid FRP–UHPC beams in flexure under fatigue loading. Composite Structures, 2011, 94( 1): 253– 266
https://doi.org/10.1016/j.compstruct.2011.06.016
21 A V N A Lima, J L Cardoso, C J S Lobo. Research on hybrid sisal/glass composites: A review. Journal of Reinforced Plastics and Composites, 2019, 38( 17): 789– 821
https://doi.org/10.1177/0731684419847272
22 Y J You, Y H Park, H Y Kim, J S Park. Hybrid effect on tensile properties of FRP rods with various material compositions. Composite Structures, 2007, 80( 1): 117– 122
https://doi.org/10.1016/j.compstruct.2006.04.065
23 B Behnam, C Eamon. Reliability-based design optimization of concrete flexural members reinforced with ductile FRP bars. Construction & Building Materials, 2013, 47 : 942– 950
https://doi.org/10.1016/j.conbuildmat.2013.05.101
24 W Qu, X Zhang, H Huang. Flexural behavior of concrete beams reinforced with hybrid (GFRP and steel) bars. Journal of Composites for Construction, 2009, 13( 5): 350– 359
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000035
25 G Wu, Z S Wu, Y B Luo, Z Y Sun, X Q Hu. Mechanical properties of steel-FRP composite bar under uniaxial and cyclic tensile loads. Journal of Materials in Civil Engineering, 2010, 22( 10): 1056– 1066
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000110
26 A El Refai, F Abed, A Al-Rahmani. Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars. Construction & Building Materials, 2015, 96 : 518– 529
https://doi.org/10.1016/j.conbuildmat.2015.08.063
27 I F Kara, A F Ashour, M A Koroglu. Flexural behavior of hybrid FRP/steel reinforced concrete beams. Composite Structures, 2015, 129 : 111– 121
https://doi.org/10.1016/j.compstruct.2015.03.073
28 D W Seo, K T Park, Y J You, S Y Lee. Experimental investigation for tensile performance of GFRP-steel hybridized rebar. Advances in Materials Science and Engineering, 2016, 2016 : 9401427–
https://doi.org/10.1155/2016/9401427
29 Q Hao, Y Wang, J Ou. Design recommendations for bond between GFRP/steel wire composite rebars and concrete. Engineering Structures, 2008, 30( 11): 3239– 3246
https://doi.org/10.1016/j.engstruct.2008.04.037
30 Y Cui, M M S Cheung, B Noruziaan, S Lee, J Tao. Development of ductile composite reinforcement bars for concrete structures. Materials and Structures, 2008, 41( 9): 1509– 1518
https://doi.org/10.1617/s11527-007-9344-8
31 B Behnam, C Eamon. Analysis of alternative ductile fiber-reinforced polymer reinforcing bar concepts. Journal of Composite Materials, 2014, 48( 6): 723– 733
https://doi.org/10.1177/0021998313477170
32 E E S Etman. Innovative hybrid reinforcement for flexural members. Journal of Composites for Construction, 2011, 15( 1): 2– 8
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000145
33 H Mazaheripour, J A O Barros, F Soltanzadeh, J Sena-Cruz. Deflection and cracking behavior of SFRSCC beams reinforced with hybrid prestressed GFRP and steel reinforcements. Engineering Structures, 2016, 125 : 546– 565
https://doi.org/10.1016/j.engstruct.2016.07.026
34 M M S Cheung, T K C Tsang. Behaviour of concrete beams reinforced with hybrid FRP composite rebar. Advances in Structural Engineering, 2010, 13( 1): 81– 93
https://doi.org/10.1260/1369-4332.13.1.81
35 B Saikia, J Thomas, A Ramaswamy, K S N Rao. Performance of hybrid rebars as longitudinal reinforcement in normal strength concrete. Materials and Structures, 2005, 38( 10): 857– 864
https://doi.org/10.1007/BF02482252
36 A M Araba, A F Ashour. Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Composites. Part B, Engineering, 2018, 154 : 321– 336
https://doi.org/10.1016/j.compositesb.2018.08.077
37 X Y Gu, Y Q Dai, J W Jiang. Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods. Engineering Structures, 2020, 206 : 110117–
https://doi.org/10.1016/j.engstruct.2019.110117
38 Y Zhou, H Gao, Z Hu, Y Qiu, M Guo, X Huang, B Hu. Ductile, durable, and reliable alternative to FRP bars for reinforcing seawater sea-sand recycled concrete beams: steel/FRP composite bars. Construction & Building Materials, 2021, 269 : 121264–
https://doi.org/10.1016/j.conbuildmat.2020.121264
39 S Liu, Y Zhou, Q Zheng, J Zhou, F Jin, H Fan. Blast responses of concrete beams reinforced with steel-GFRP composite bars. Structures, 2019, 22 : 200– 212
https://doi.org/10.1016/j.istruc.2019.08.010
40 D Zhao, J Pan, Y Zhou, L Sui, Z Ye. New types of steel-FRP composite bar with round steel bar inner core: Mechanical properties and bonding performances in concrete. Construction & Building Materials, 2020, 242 : 118062–
https://doi.org/10.1016/j.conbuildmat.2020.118062
41 X Wang, Z S Wu, G Wu, H Zhu, F X Zen. Enhancement of basalt FRP by hybridization for long-span cable-stayed bridge. Composites. Part B, Engineering, 2013, 44( 1): 184– 192
https://doi.org/10.1016/j.compositesb.2012.06.001
42 X Wang, G Wu, Z S Wu, Z Q Dong, Q Xie. Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment. Materials & Design, 2014, 64 : 721– 728
https://doi.org/10.1016/j.matdes.2014.07.064
43 Z Y Sun, Y Tang, Y B Luo, G Wu, X Y He. Mechanical properties of steel-FRP composite bars under tensile and compressive loading. International Journal of Polymer Science, 2017, 2017 : 1– 11
https://doi.org/10.1155/2017/5691278
44 G Wu, Z Y Sun, Z S Wu, Y B Luo. Mechanical properties of steel-FRP composite bars (SFCBs) and performance of SFCB reinforced concrete structures. Advances in Structural Engineering, 2012, 15( 4): 625– 635
https://doi.org/10.1260/1369-4332.15.4.625
45 Y X Zhang, X S Lin. Nonlinear finite element analyses of steel/FRP-reinforced concrete beams by using a novel composite beam element. Advances in Structural Engineering, 2013, 16( 2): 339– 352
https://doi.org/10.1260/1369-4332.16.2.339
46 ASTM. Standard Specification for Carbon and Alloy Steel Bars Subject to End-Quench Hardenability Requirements. West Conshohocken, PA, 2020
47 ACI 440.3R–04. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strenthening Concrete Structures. Farmington Hill: American Concrete Institute, 2004
48 JG/T 406–2013. Glass Fibre Reinforced Plastics Rebar for Civil Engineering. Beijing: China Building Industry Press, 2013
49 GB/T 1448–2005. Fiber-reinforced Plastics Composites-Determination of Compressive Properties. Beijing: Standardization Administration of the People’s Republic of China, 2005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed