Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (5): 1073-1096   https://doi.org/10.1007/s11709-021-0758-0
  本期目录
Recent development in biogeotechnology and its engineering applications
Hanjiang LAI1,2, Shifan WU2, Mingjuan CUI2,3, Jian CHU2()
1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
3. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
 全文: PDF(11216 KB)   HTML
Abstract

Microbial geotechnology or biogeotechnology is a new branch of geotechnical engineering. It involves the use of microbiology for traditional geotechnical applications. Many new innovative soil improvement methods have been developed in recent years based on this approach. A proper understanding of the various approaches and the performances of different methods can help researchers and engineers to develop the most appropriate geotechnical solutions. At present, most of the methods can be categorized into three major types, biocementation, bioclogging, and biogas desaturation. Similarities and differences of different approaches and their potential applications are reviewed. Factors affecting the different processes are also discussed. Examples of up-scaled model tests and pilot trials are presented to show the emerging applications. The challenges and problems of biogeotechnology are also discussed.

Key wordsbiogeotechnology    biocementation    bioclogging    biogas    strength enhancement    liquefaction mitigation    seepage control
收稿日期: 2021-01-10      出版日期: 2021-11-29
Corresponding Author(s): Jian CHU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1073-1096.
Hanjiang LAI, Shifan WU, Mingjuan CUI, Jian CHU. Recent development in biogeotechnology and its engineering applications. Front. Struct. Civ. Eng., 2021, 15(5): 1073-1096.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0758-0
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I5/1073
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 J K Mitchell, J C Santamarina. Biological considerations in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131( 10): 1222– 1233
https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
2 National Research Council. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation. Washington, D.C.: National Academies Press, 2006
3 J T DeJong, K Soga, E Kavazanjian, S Burns, L A Van Paassen, A Al Qabany, A Aydilek, S S Bang, M Burbank, L F Caslake, C Y Chen, X Cheng, J Chu, S Ciurli, A Esnault-Filet, S Fauriel, N Hamdan, T Hata, Y Inagaki, S Jefferis, M Kuo, L Laloui, J Larrahondo, D A C Manning, B Martinez, B M Montoya, D C Nelson, A Palomino, P Renforth, J C Santamarina, E A Seagren, B Tanyu, M Tsesarsky, T Weaver. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Geotechnique, 2013, 63( 4): 287– 301
https://doi.org/10.1680/geot.SIP13.P.017
4 V Ivanov, J Chu. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Biotechnology, 2008, 7( 2): 139– 153
https://doi.org/10.1007/s11157-007-9126-3
5 N K Dhami, M S Reddy, A Mukherjee. Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 2013, 4 : 314–
https://doi.org/10.3389/fmicb.2013.00314
6 N J Jiang, C S Tang, T Hata, B Courcelles, O Dawoud, D N Singh. Bio-mediated soil improvement: the way forward. Soil Use and Management, 2020, 36( 2): 185– 188
https://doi.org/10.1111/sum.12571
7 Martinez B C, DeJong J T. Bio-mediated soil improvement: load transfer mechanisms at the micro-and macro-scales. In: Proceedings of the US-China Workshop on Ground Improvement Technology. 2009, 242–251
8 A J Phillips, R Gerlach, E Lauchnor, A C Mitchell, A B Cunningham, L Spangler. Engineered applications of ureolytic biomineralization: A review. Biofouling, 2013, 29( 6): 715– 733
https://doi.org/10.1080/08927014.2013.796550
9 D Terzis, L Laloui. A decade of progress and turning points in the understanding of bio-improved soils: A review. Geomechanics for Energy and the Environment, 2019, 19 : 100116–
https://doi.org/10.1016/j.gete.2019.03.001
10 P Baveye, P Vandevivere, B L Hoyle, P C DeLeo, D S de Lozada. Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Critical Reviews in Environmental Science and Technology, 1998, 28( 2): 123– 191
https://doi.org/10.1080/10643389891254197
11 DeJong J, Proto C, Kuo M, Gomez M. Bacteria, biofilms, and invertebrates: The next generation of geotechnical engineers? In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014, 3959–3968
12 J He, J Chu, V Ivanov. Mitigation of liquefaction of saturated sand using biogas. Geotechnique, 2013, 63( 4): 267– 275
https://doi.org/10.1680/geot.SIP13.P.004
13 S T O’Donnell, B E Rittmann, E Jr Kavazanjian. MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 12): 04017094–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818
14 J T DeJong, M B Fritzges, K Nüsslein. Microbially induced cementation to control sand response to undrained shear. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132( 11): 1381– 1392
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)
15 L A van Paassen, C M Daza, M Staal, D Y Sorokin, W van der Zon, M C M van Loosdrecht. Potential soil reinforcement by biological denitrification. Ecological Engineering, 2010, 36( 2): 168– 175
https://doi.org/10.1016/j.ecoleng.2009.03.026
16 R Warthmann, Y Van Lith, C Vasconcelos, J A McKenzie, A M Karpoff. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 2000, 28( 12): 1091– 1094
https://doi.org/10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2
17 V Ivanov, J Chu, V Stabnikov. Iron- and calcium-based biogrouts for porous soils. Proceedings of the Institution of Civil Engineers-Construction Materials, 2014, 167( 1): 36– 41
18 E E Roden, M M Urrutia. Influence of biogenic Fe (II) on bacterial crystalline Fe (III) oxide reduction. Geomicrobiology Journal, 2002, 19( 2): 209– 251
https://doi.org/10.1080/01490450252864280
19 X Yu, J Jiang. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review. Environmental Science and Pollution Research International, 2018, 25( 22): 21483– 21497
https://doi.org/10.1007/s11356-018-2143-7
20 C Beato, M S Fernández, S Fermani, M Reggi, A Neira-Carrillo, A Rao, G Falini, J L Arias. Calcium carbonate crystallization in tailored constrained environments. CrystEngComm, 2015, 17( 31): 5953– 5961
https://doi.org/10.1039/C5CE00783F
21 Y Z Wang, K Soga, J T DeJong, A J Kabla. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Geotechnique, 2019, 69( 12): 1086– 1094
https://doi.org/10.1680/jgeot.18.P.031
22 Y Wang, K Soga, J T DeJong, A J Kabla. Microscale visualization of microbial-induced calcium carbonate precipitation processes. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 9): 04019045–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079
23 S Dupraz, M Parmentier, B Ménez, F Guyot. Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers. Chemical Geology, 2009, 265( 1−2): 44– 53
https://doi.org/10.1016/j.chemgeo.2009.05.003
24 T Ghosh, S Bhaduri, C Montemagno, A Kumar. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS One, 2019, 14( 1): e0210339–
https://doi.org/10.1371/journal.pone.0210339
25 F Hammes, N Boon, J de Villiers, W Verstraete, S D Siciliano. Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology, 2003, 69( 8): 4901– 4909
https://doi.org/10.1128/AEM.69.8.4901-4909.2003
26 S Stocks-Fischer, J K Galinat, S S Bang. Microbiological precipitation of CaCO 3. Soil Biology & Biochemistry, 1999, 31( 11): 1563– 1571
https://doi.org/10.1016/S0038-0717(99)00082-6
27 C Jimenez-Lopez, F Jroundi, M Rodríguez-Gallego, J M Arias, M T Gonzalez-Muñoz. Biomineralization induced by Myxobacteria. Communicating Current Eesearch and Educational Ropics and Trends in Applied Microbiology, 2007, 1 : 143– 154
28 J Gleaton, Z Lai, R Xiao, Q Chen, Y Zheng. Microalga-induced biocementation of martian regolith simulant: Effects of biogrouting methods and calcium sources. Construction & Building Materials, 2019, 229 : 116885–
https://doi.org/10.1016/j.conbuildmat.2019.116885
29 K L Bachmeier, A E Williams, J R Warmington, S S Bang. Urease activity in microbiologically-induced calcite precipitation. Journal of Biotechnology, 2002, 93( 2): 171– 181
https://doi.org/10.1016/S0168-1656(01)00393-5
30 M Sharma, N Satyam, K R Reddy. Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13( 3): 705– 716
https://doi.org/10.1016/j.jrmge.2020.11.006
31 J M Whitaker, S Vanapalli, D Fortin. Improving the strength of sandy soils via ureolytic CaCO 3 solidification by Sporosarcina ureae. Biogeosciences, 2018, 15( 14): 4367– 4380
https://doi.org/10.5194/bg-15-4367-2018
32 S Al-Thawadi, R Cord-Ruwisch. Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. Journal of Advanced Science and Engineering Research, 2012, 2( 1): 12– 26
33 G G N N Amarakoon, S Kawasaki. Factors affecting sand solidification using MICP with Pararhodobacter sp. Materials Transactions, 2018, 59( 1): 72– 81
34 K D Arunachalam, K S Sathyanarayanan, B S Darshan, R B Raja. Studies on the characterisation of Biosealant properties of Bacillus sphaericus. International Journal of Engineering Science and Technology, 2010, 2( 3): 270– 277
35 H Badiee, M Sabermahani, F Tabandeh, A Saeedi Javadi. Application of an indigenous bacterium in comparison with Sporosarcina pasteurii for improvement of fine granular soil. International Journal of Environmental Science and Technology, 2019, 16( 12): 8389– 8400
https://doi.org/10.1007/s13762-019-02292-9
36 A U Charpe, M V Latkar. Effect of biocementation using soil bacteria to augment the mechanical properties of cementitious materials. Materials Today: Proceedings, 2020, 21 : 1218– 1222
https://doi.org/10.1016/j.matpr.2020.01.072
37 J Chu, V Stabnikov, V Ivanov. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil. Geomicrobiology Journal, 2012, 29( 6): 544– 549
https://doi.org/10.1080/01490451.2011.592929
38 T Danjo, S Kawasaki. Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism. Materials Transactions, 2016, 57( 3): 428– 437
https://doi.org/10.2320/matertrans.M-M2015842
39 P Ghosh, S Mandal, S Pal, G Bandyopadhyaya, B D Chattopadhyay. Development of bioconcrete material using an enrichment culture of novel thermophilic anaerobic bacteria. Indian Journal of Experimental Biology, 2006, 44 : 336– 339
40 M Nemati, E A Greene, G Voordouw. Permeability profile modification using bacterially formed calcium carbonate: Comparison with enzymic option. Process Biochemistry, 2005, 40( 2): 925– 933
https://doi.org/10.1016/j.procbio.2004.02.019
41 M Tsesarsky, D Gat, Z Ronen. Biological aspects of microbial-induced calcite precipitation. Environmental Geotechnics, 2018, 5( 2): 69– 78
https://doi.org/10.1680/jenge.15.00070
42 M Umar, K A Kassim, M U Zango, A S Muhammed. Performance evaluation of lime and microbial cementation in residual soil improvement. IOP Conference Series: Materials Science and Engineering, 2019, 527( 1): 012005–
43 Z Yang, X Cheng. A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures. Construction & Building Materials, 2013, 41 : 505– 515
https://doi.org/10.1016/j.conbuildmat.2012.12.055
44 Y Fujita, F G Ferris, R D Lawson, F S Colwell, R W Smith. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, 2000, 17( 4): 305– 318
https://doi.org/10.1080/782198884
45 L Cheng, R Cord-Ruwisch. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. Journal of Industrial Microbiology & Biotechnology, 2013, 40( 10): 1095– 1104
https://doi.org/10.1007/s10295-013-1310-6
46 Y Yang, J Chu, B Cao, H Liu, L Cheng. Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 2020, 262 : 121315–
https://doi.org/10.1016/j.jclepro.2020.121315
47 M Amini Kiasari, M S Pakbaz, G R Ghezelbash. Increasing of soil urease activity by stimulation of indigenous bacteria and investigation of their role on shear strength. Geomicrobiology Journal, 2018, 35( 10): 821– 828
https://doi.org/10.1080/01490451.2018.1476627
48 M Burbank, T Weaver, R Lewis, T Williams, B Williams, R Crawford. Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139( 6): 928– 936
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781
49 D Gat, Z Ronen, M Tsesarsky. Soil bacteria population dynamics following stimulation for ureolytic microbial-induced CaCO 3 precipitation. Environmental Science & Technology, 2016, 50( 2): 616– 624
https://doi.org/10.1021/acs.est.5b04033
50 D Gat, Z Ronen, M Tsesarsky. Long-term sustainability of microbial-induced CaCO 3 precipitation in aqueous media. Chemosphere, 2017, 184 : 524– 531
https://doi.org/10.1016/j.chemosphere.2017.06.015
51 M G Gomez, C M R Graddy, J T DeJong, D C Nelson, M Tsesarsky. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144( 1): 04017098–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804
52 M T Islam, B C S Chittoori, M Burbank. Evaluating the applicability of biostimulated calcium carbonate precipitation to stabilize clayey soils. Journal of Materials in Civil Engineering, 2020, 32( 3): 04019369–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003036
53 K Kannan, J Bindu, P Vinod. Engineering behaviour of MICP treated marine clays. Marine Georesources and Geotechnology, 2020, 38( 7): 761– 769
https://doi.org/10.1080/1064119X.2020.1728791
54 P Liu, G Shao, R Huang. Study of the interactions between S. pasteurii and indigenous bacteria and the effect of these interactions on the MICP. Arabian Journal of Geosciences, 2019, 12( 23): 724–
https://doi.org/10.1007/s12517-019-4840-z
55 A L Ramachandran, P Polat, A Mukherjee, N K Dhami. Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities. Applied Microbiology and Biotechnology, 2020, 104( 8): 3655– 3673
https://doi.org/10.1007/s00253-020-10474-6
56 Y J Wang, X L Han, N J Jiang, J Wang, J Feng. The effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand. International Journal of Environmental Science and Technology, 2020, 17( 3): 1795– 1808
https://doi.org/10.1007/s13762-019-02541-x
57 Chu J, Ivanov V, He J, Naeimi M, Li B, Stabnikov V. Development of microbial geotechnology in Singapore. In: Proceedings of Geo-Frontiers 2011 Advances in Geotechnical Engineering. Dallas: ASCE, 2011, 4070–4078
58 Chu J, Ivanov V, He J, Maeimi M, Wu S. Use of Biogeotechnologies for Soil Improvement. Ground Improvement Case Histories. Oxford: Butterworth-Heinemann, 2015, 571–589
59 J T DeJong, B M Mortensen, B C Martinez, D C Nelson. Bio-mediated soil improvement. Ecological Engineering, 2010, 36( 2): 197– 210
https://doi.org/10.1016/j.ecoleng.2008.12.029
60 J T DeJong, K Soga, S A Banwart, W R Whalley, T R Ginn, D C Nelson, B M Mortensen, B C Martinez, T Barkouki. Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions. Journal of the Royal Society, Interface, 2011, 8( 54): 1– 15
https://doi.org/10.1098/rsif.2010.0270
61 Haouzi F Z, Courcelles B. Major applications of MICP sand treatment at multi-scale levels: A review. In: Proceedings of 71st Canadian Geotechnical Conference and 13th Joint CGS/IAH-CNC Groundwater Conference. Richmond: Canadian Geotechnical Society, 2018
62 S H Chae, H Chung, K Nam. Evaluation of microbially Induced calcite precipitation (MICP) methods on different soil types for wind erosion control. Environmental Engineering Research, 2021, 26( 1): 190507–
https://doi.org/10.4491/eer.2019.507
63 N J Jiang, K Soga, M Kuo. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 3): 04016100–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559
64 N J Jiang, C S Tang, L Y Yin, Y H Xie, B Shi. Applicability of microbial calcification method for sandy-slope surface erosion control. Journal of Materials in Civil Engineering, 2019, 31( 11): 04019250–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002897
65 N J Jiang, K Soga. Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP). Soil and Foundation, 2019, 59( 3): 699– 709
https://doi.org/10.1016/j.sandf.2019.02.003
66 S Liu, R Wang, J Yu, X Peng, Y Cai, B Tu. Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles. Construction & Building Materials, 2020, 243 : 118202–
https://doi.org/10.1016/j.conbuildmat.2020.118202
67 M Maleki, S Ebrahimi, F Asadzadeh, M Emami Tabrizi. Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. International Journal of Environmental Science and Technology, 2016, 13( 3): 937– 944
https://doi.org/10.1007/s13762-015-0921-z
68 E Salifu, E MacLachlan, K R Iyer, C W Knapp, A Tarantino. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Engineering Geology, 2016, 201 : 96– 105
https://doi.org/10.1016/j.enggeo.2015.12.027
69 M Van der Ruyt, W van der Zon. Biological in situ reinforcement of sand in near-shore areas. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2009, 162( 1): 81– 83
https://doi.org/10.1680/geng.2009.162.1.81
70 S U Gerbersdorf, T Jancke, B Westrich, D M Paterson. Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 2008, 6( 1): 57– 69
71 S C Bang, S H Min, S S Bang. KGS Awards Lectures: Application of microbiologically induced soil stabilization technique for dust suppression. International Journal of Geo-Engineering, 2011, 3( 2): 27– 37
72 Meyer F D, Bang S, Min S, Stetler L D, Bang S S. Microbiologically-induced soil stabilization: Application of Sporosarcina pasteurii for fugitive dust control. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4002–4011
73 M Naeimi, J Chu. Comparison of conventional and bio-treated methods as dust suppressants. Environmental Science and Pollution Research International, 2017, 24( 29): 23341– 23350
https://doi.org/10.1007/s11356-017-9889-1
74 V Stabnikov, M Naeimi, V Ivanov, J Chu. Formation of water-impermeable crust on sand surface using biocement. Cement and Concrete Research, 2011, 41( 11): 1143– 1149
https://doi.org/10.1016/j.cemconres.2011.06.017
75 V Stabnikov, J Chu, A N Myo, V Ivanov. Immobilization of sand dust and associated pollutants using bioaggregation. Water, Air, and Soil Pollution, 2013, 224( 9): 1631–
https://doi.org/10.1007/s11270-013-1631-0
76 S A Abo-El-Enein, A H Ali, F N Talkhan, H A Abdel-Gawwad. Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 2012, 8( 3): 185– 192
https://doi.org/10.1016/j.hbrcj.2013.02.001
77 V Achal, A Mukerjee, M Sudhakara Reddy. Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction & Building Materials, 2013, 48 : 1– 5
https://doi.org/10.1016/j.conbuildmat.2013.06.061
78 K Van Tittelboom, N De Belie, W De Muynck, W Verstraete. Use of bacteria to repair cracks in concrete. Cement and Concrete Research, 2010, 40( 1): 157– 166
https://doi.org/10.1016/j.cemconres.2009.08.025
79 Yang Z, Cheng X, Li M. Engineering properties of MICP-bonded sandstones used for historical masonry building restoration. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4031–4040
80 W De Muynck, N De Belie, W Verstraete. Microbial carbonate precipitation in construction materials: A review. Ecological Engineering, 2010, 36( 2): 118– 136
https://doi.org/10.1016/j.ecoleng.2009.02.006
81 W De Muynck, K Verbeken, N De Belie, W Verstraete. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecological Engineering, 2010, 36( 2): 99– 111
https://doi.org/10.1016/j.ecoleng.2009.03.025
82 W De Muynck, S Leuridan, D Van Loo, K Verbeken, V Cnudde, N De Belie, W Verstraete. Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied and Environmental Microbiology, 2011, 77( 19): 6808– 6820
https://doi.org/10.1128/AEM.00219-11
83 W De Muynck, K Verbeken, N De Belie, W Verstraete. Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Applied Microbiology and Biotechnology, 2013, 97( 3): 1335– 1347
https://doi.org/10.1007/s00253-012-3997-0
84 C Rodriguez-Navarro, M Rodriguez-Gallego, K Ben Chekroun, M T Gonzalez-Munoz. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 2003, 69( 4): 2182– 2193
https://doi.org/10.1128/AEM.69.4.2182-2193.2003
85 L Cheng, M A Shahin, D Mujah. Influence of key environmental conditions on microbially induced cementation for soil stabilization. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 1): 04016083–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586
86 M Sharma, N Satyam, K R Reddy. Effect of freeze−thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology, 2021, 284 : 106022–
https://doi.org/10.1016/j.enggeo.2021.106022
87 B Abbasi, H X Ta, B Muhunthan, S Ramezanian, N Abu-Lail, T H Kwon. Modeling of Permeability Reduction in Bioclogged Porous Sediments. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144( 4): 04018016–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001869
88 H C Flemming, J Wingender. The biofilm matrix. Nature Reviews. Microbiology, 2010, 8( 9): 623– 633
https://doi.org/10.1038/nrmicro2415
89 C W W Ng, P S So, J L Coo, C Zhou, S Y Lau. Effects of biofilm on gas permeability of unsaturated sand. Geotechnique, 2019, 69( 10): 917– 923
https://doi.org/10.1680/jgeot.17.T.042
90 T Farah, H Souli, J M Fleureau, G Kermouche, J J Fry, B Girard, D Aelbrecht, J Lambert, M Harkes. Durability of Bioclogging Treatment of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142( 9): 04016040–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001503
91 K Muthukkumaran, B S Shashank. Durability of microbially induced calcite precipitation (micp) treated cohesionless soils. Japanese Geotechnical Society Special Publication, 2016, 2( 56): 1946– 1949
https://doi.org/10.3208/jgssp.IND-23
92 N J Jiang, K Soga. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures. Geotechnique, 2017, 67( 1): 42– 55
https://doi.org/10.1680/jgeot.15.P.182
93 Clarà Saracho A, Haigh S K, Ehsan Jorat M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand. Geotechnique, 2020: 1–15
94 J Chu, V Ivanov, V Stabnikov, B Li. Microbial method for construction of an aquaculture pond in sand. Geotechnique, 2013, 63( 10): 871– 875
https://doi.org/10.1680/geot.SIP13.P.007
95 V Stabnikov, V Ivanov, J Chu. Sealing of sand using spraying and percolating biogrouts for the construction of model aquaculture pond in arid desert. International Aquatic Research, 2016, 8( 3): 207– 216
https://doi.org/10.1007/s40071-016-0136-z
96 J M Minto, E MacLachlan, G El Mountassir, R J Lunn. Rock fracture grouting with microbially induced carbonate precipitation. Water Resources Research, 2016, 52( 11): 8827– 8844
https://doi.org/10.1002/2016WR018884
97 C Z Wu, J Chu, S F Wu, Y Hong. 3D characterization of microbially induced carbonate precipitation in rock fracture and the resulted permeability reduction. Engineering Geology, 2019, 249 : 23– 30
https://doi.org/10.1016/j.enggeo.2018.12.017
98 C Z Wu, J Chu, S F Wu, L Cheng, L A van Paassen. Microbially induced calcite precipitation along a circular flow channel under a constant flow condition. Acta Geotechnica, 2019, 14( 3): 673– 683
https://doi.org/10.1007/s11440-018-0747-1
99 C Z Wu, J Chu, S F Wu, W Guo. Quantifying the permeability reduction of biogrouted rock fracture. Rock Mechanics and Rock Engineering, 2019, 52( 3): 947– 954
https://doi.org/10.1007/s00603-018-1669-9
100 Wu S F, Chu J, Wu C Z. Biogrouting for Seepage Control for Rock Joints. In: ISRM International Symposium—10th Asian Rock Mechanics Symposium. Singapore: International Society for Rock Mechanics and Rock Engineering, 2018
101 C X Qian, J Y Wang, R X Wang, L Cheng. Corrosion protection of cement-based building materials by surface deposition of CaCO 3 by Bacillus pasteurii. Materials Science and Engineering C, 2009, 29( 4): 1273– 1280
https://doi.org/10.1016/j.msec.2008.10.025
102 U K Gollapudi, C L Knutson, S S Bang, M R Islam. A new method for controlling leaching through permeable channels. Chemosphere, 1995, 30( 4): 695– 705
https://doi.org/10.1016/0045-6535(94)00435-W
103 F A MacLeod, H M Lappin-Scott, J W Costerton. Plugging of a model rock system by using starved bacteria. Applied and Environmental Microbiology, 1988, 54( 6): 1365– 1372
https://doi.org/10.1128/aem.54.6.1365-1372.1988
104 Zhong L, Islam M. A new microbial plugging process and its impact on fracture remediation. In: SPE Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers, 1995
105 S T O’Donnell, C A Hall, E Jr Kavazanjian, B E Rittmann. Biogeochemical model for soil improvement by denitrification. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 11): 04019091–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002126
106 S T O’Donnell, B E Rittmann, E Jr Kavazanjian. Factors controlling microbially induced desaturation and precipitation (MIDP) via denitrification during continuous flow. Geomicrobiology Journal, 2019, 36( 6): 543– 558
https://doi.org/10.1080/01490451.2019.1581858
107 J He, J Chu, S Wu, J Peng. Mitigation of soil liquefaction using microbially induced desaturation. Journal of Zhejiang University. Science A, 2016, 17( 7): 577– 588
https://doi.org/10.1631/jzus.A1600241
108 J He, J Chu, Y Gao, H Liu. Research advances and challenges in biogeotechnologies. Geotechnical Research, 2019, 6( 2): 144– 155
https://doi.org/10.1680/jgere.18.00035
109 C A Carlson, J L Ingraham. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Applied and Environmental Microbiology, 1983, 45( 4): 1247– 1253
https://doi.org/10.1128/aem.45.4.1247-1253.1983
110 Peng E X, Zhang D W. Prevention of liquefaction of saturated sand using biogas produced by Pseudomonas stutzeri. In: 2017 International Conference on Transportation Infrastructure and Materials (ICTIM 2017). Qingdao: DEStech Transactions on Materials Science and Engineering, 2017
111 S T O’Donnell, E Jr Kavazanjian, B E Rittmann. MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 12): 04017095–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806
112 S Saggar, N Jha, J Deslippe, N Bolan, J Luo, D Giltrap, D G Kim, M Zaman, R Tillman. Denitrification and N 2O: N 2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Science of the Total Environment, 2013, 465 : 173– 195
https://doi.org/10.1016/j.scitotenv.2012.11.050
113 C Chou, E Seagren, A Aydilek, M Lai. Biocalcification of sand through ureolysis. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137( 12): 1179– 1189
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532
114 J Do, B M Montoya, M A Gabr. Debonding of microbially induced carbonate precipitation-stabilized sand by shearing and erosion. Geomechanics and Engineering. International Journal (Toronto, Ont.), 2019, 17( 5): 429– 438
115 K Feng, B Montoya. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142( 1): 04015057–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379
116 Z Feng, Y Zhao, W Zeng, Z Lu, S P Shah. Using microbial carbonate precipitation to improve the properties of recycled fine aggregate and mortar. Construction & Building Materials, 2020, 230 : 116949–
https://doi.org/10.1016/j.conbuildmat.2019.116949
117 X Gai, M Sánchez. An elastoplastic mechanical constitutive model for microbially mediated cemented soils. Acta Geotechnica, 2019, 14( 3): 709– 726
https://doi.org/10.1007/s11440-018-0721-y
118 L Liu, H Liu, A W Stuedlein, T M Evans, Y Xiao. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 2019, 56( 10): 1502– 1513
https://doi.org/10.1139/cgj-2018-0007
119 A Nafisi, D Mocelin, B M Montoya, S Underwood. Tensile strength of sands treated with microbially induced carbonate precipitation. Canadian Geotechnical Journal, 2020, 57( 10): 1611– 1616
https://doi.org/10.1139/cgj-2019-0230
120 Shanahan C, Montoya B M. Strengthening coastal sand dunes using microbial-induced calcite precipitation. In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014: 1683–1692
121 A Sharma, R Ramkrishnan. Study on effect of microbial induced calcite precipitates on strength of fine grained soils. Perspectives in Science, 2016, 8 : 198– 202
https://doi.org/10.1016/j.pisc.2016.03.017
122 O’Donnell S Thomas, E Jr Kavazanjian. Stiffness and dilatancy improvements in uncemented sands treated through MICP. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141( 11): 02815004–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407
123 D Bernardi, J T DeJong, B M Montoya, B C Martinez. Bio-bricks: Biologically cemented sandstone bricks. Construction & Building Materials, 2014, 55 : 462– 469
https://doi.org/10.1016/j.conbuildmat.2014.01.019
124 S G Choi, S Wu, J Chu. Biocementation for sand using an eggshell as calcium source. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142( 10): 06016010–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001534
125 S G Choi, K Wang, J Chu. Properties of biocemented, fiber reinforced sand. Construction & Building Materials, 2016, 120 : 623– 629
https://doi.org/10.1016/j.conbuildmat.2016.05.124
126 S G Choi, J Chu, R C Brown, K Wang, Z Wen. Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering, 2017, 5( 6): 5183– 5190
https://doi.org/10.1021/acssuschemeng.7b00521
127 J Chu, V Ivanov, M Naeimi, V Stabnikov, H L Liu. Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 2014, 9( 2): 277– 285
https://doi.org/10.1007/s11440-013-0278-8
128 J He, J Chu. Cementation of sand due to salt precipitation in drying process. Marine Georesources and Geotechnology, 2017, 35( 3): 441– 445
https://doi.org/10.1080/1064119X.2016.1168498
129 M L Lee, W S Ng, Y Tanaka. Stress-deformation and compressibility responses of bio-mediated residual soils. Ecological Engineering, 2013, 60 : 142– 149
https://doi.org/10.1016/j.ecoleng.2013.07.034
130 Waldschmidt J B, Courcelles B. Influence of resting periods on the efficiency of microbially induced calcite precipitation (MICP) in non-saturated conditions. In: International Congress and Exhibition “Sustainable Civil Infrastructures”. Springer, Cham, 2019, 119–126
131 Y Xiao, Z Yuan, J Lin, J Ran, B Dai, J Chu, H Liu. Effect of particle shape of glass beads on the strength and deformation of cemented sands. Acta Geotechnica, 2019, 14( 6): 2123– 2131
https://doi.org/10.1007/s11440-019-00830-w
132 Y Xiao, Y Wang, C S Desai, X Jiang, H Liu. Strength and deformation responses of biocemented sands using a temperature-controlled method. International Journal of Geomechanics, 2019, 19( 11): 04019120–
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001497
133 S Venuleo, L Laloui, D Terzis, T Hueckel, M Hassan. Microbially induced calcite precipitation effect on soil thermal conductivity. Géotechnique Letters, 2016, 6( 1): 39– 44
https://doi.org/10.1680/jgele.15.00125
134 Z Wang, N Zhang, J Ding, Q Li, J Xu. Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction. International Journal of Heat and Mass Transfer, 2020, 147 : 118899–
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899
135 S G Choi, T Hoang, E J Alleman, J Chu. Splitting tensile strength of fiber-reinforced and biocemented sand. Journal of Materials in Civil Engineering, 2019, 31( 9): 06019007–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002841
136 S G Choi, T Hoang, S S Park. Undrained behavior of microbially induced calcite precipitated sand with polyvinyl alcohol fiber. Applied Sciences (Basel, Switzerland), 2019, 9( 6): 1214–
https://doi.org/10.3390/app9061214
137 X W Lei, S Q Lin, Q S Meng, X Liao, J Xu. Influence of different fiber types on properties of biocemented calcareous sand. Arabian Journal of Geosciences, 2020, 13( 8): 317–
https://doi.org/10.1007/s12517-020-05309-7
138 M Li, L Li, U Ogbonnaya, K Wen, A Tian, F Amini. Influence of fiber addition on mechanical properties of MICP-treated sand. Journal of Materials in Civil Engineering, 2016, 28( 4): 04015166–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442
139 Li L, Li M, Ogbonnaya U, Wen K, Xu Y, Amini F. Study of a discrete randomly distributed fiber on the tensile strength improvement of microbial-induced soil stabilization. In: Geotechnical Frontiers 2017. Orlando: American Society of Civil Engineers, 2017, 12–18
140 S Liu, K Wen, C Armwood, C Bu, C Li, F Amini, L Li. Enhancement of MICP-treated sandy soils against environmental deterioration. Journal of Materials in Civil Engineering, 2019, 31( 12): 04019294–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002959
141 Y Xiao, X He, T M Evans, A W Stuedlein, H Liu. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 9): 04019048–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108
142 D F Yao, J Wu, G W Wang, P B Wang, J J Zheng, J Y Yan, L Xu, Y J Yan. Effect of wool fiber addition on the reinforcement of loose sands by microbially induced carbonate precipitation (MICP): Mechanical property and underlying mechanism. Acta Geotechnica, 2021, 16( 5): 1401– 1416
https://doi.org/10.1007/s11440-020-01112-6
143 Y Zhao, C Fan, F Ge, X Cheng, P Liu. Enhancing strength of MICP-treated sand with scrap of activated carbon-fiber felt. Journal of Materials in Civil Engineering, 2020, 32( 4): 04020061–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003136
144 N Hamdan, Z Zhao, M Mujica, E Jr Kavazanjian, X He. Hydrogel-assisted enzyme-induced carbonate mineral precipitation. Journal of Materials in Civil Engineering, 2016, 28( 10): 04016089–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001604
145 X R Wang, J L Tao, R T Bao, T Tran, S Tucker-Kulesza. Surficial soil stabilization against water-induced erosion using polymer-modified microbially induced carbonate precipitation. Journal of Materials in Civil Engineering, 2018, 30( 10): 04018267–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002490
146 X R Wang, J L Tao. Polymer-modified microbially induced carbonate precipitation for one-shot targeted and localized soil improvement. Acta Geotechnica, 2019, 14( 3): 657– 671
https://doi.org/10.1007/s11440-018-0757-z
147 L Cheng, Y Yang, J Chu. In-situ microbially induced Ca 2+-alginate polymeric sealant for seepage control in porous materials. Microbial Biotechnology, 2019, 12( 2): 324– 333
https://doi.org/10.1111/1751-7915.13315
148 V Ivanov, J Chu, V Stabnikov, B Li. Strengthening of soft marine clay using bioencapsulation. Marine Georesources and Geotechnology, 2015, 33( 4): 320– 324
https://doi.org/10.1080/1064119X.2013.877107
149 B Liu, C Zhu, C S Tang, Y H Xie, L Y Yin, Q Cheng, B Shi. Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 2020, 264 : 105389–
https://doi.org/10.1016/j.enggeo.2019.105389
150 Rebata-Landa V. Microbial activity in sediments: Effects on soil behavior. Dissertation for the Doctoral Degree. Atlanta: Georgia Institute of Technology, 2007
151 D Kim, K Park, D Kim. Effects of ground conditions on microbial cementation in soils. Materials (Basel), 2013, 7( 1): 143– 156
https://doi.org/10.3390/ma7010143
152 M L Lee, W S Ng, C K Tan, S L Hii. Bio-mediated soil improvement under various concentrations of cementation reagent. Applied Mechanics and Materials, 2012, 204 : 326– 329
153 W S Ng, M L Lee, S L Hii. An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 2012, 62( 2): 723– 729
154 N W Soon, L M Lee, T C Khun, H S Ling. Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 2013, 17( 4): 718– 728
https://doi.org/10.1007/s12205-013-0149-8
155 N W Soon, L M Lee, T C Khun, H S Ling. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140( 5): 04014006–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001089
156 Safavizadeh S, Montoya B M, Gabr M A. Effect of Microbial Induced Calcium Carbonate Precipitation on the Performance of Ponded Coal Ash. Kentucky: Association of State Dam Safety Officials, Inc., 2017
157 Zhang J, Wen K, Li L. Leaching assessment of MICP-treated coal combustion products in roadways embankment. In: Eighth International Conference on Case Histories in Geotechnical Engineering (Geo-Congress 2019). Philadelphia: American Society of Civil Engineers, 2019
158 Chittoori B C S, Rahman T, Burbank M, Moghal A A B. Evaluating shallow mixing protocols as application methods for microbial induced calcite precipitation targeting expansive soil treatment. In: Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019
159 S Liu, J Yu, X Peng, Y Cai, B Tu. Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Construction & Building Materials, 2020, 248 : 118611–
https://doi.org/10.1016/j.conbuildmat.2020.118611
160 R Cardoso, I Pires, S O D Duarte, G A Monteiro. Effects of clay’s chemical interactions on biocementation. Applied Clay Science, 2018, 156 : 96– 103
https://doi.org/10.1016/j.clay.2018.01.035
161 T Sasaki, R Kuwano. Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO 3. Soil and Foundation, 2016, 56( 3): 485– 495
https://doi.org/10.1016/j.sandf.2016.04.014
162 X Sun, L Miao, R Chen. Effects of different clay’s percentages on improvement of sand-clay mixtures with microbially induced calcite precipitation. Geomicrobiology Journal, 2019, 36( 9): 810– 818
https://doi.org/10.1080/01490451.2019.1631912
163 T Hoang, J Alleman, B Cetin, K Ikuma, S G Choi. Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP). Canadian Geotechnical Journal, 2019, 56( 6): 808– 822
https://doi.org/10.1139/cgj-2018-0191
164 M A Ibrahim, R R Al-Omari, M H Ibrahim. Experimental study to improve the shear stress of silty-sandy soils by using urease producing bacteria. American Scientific Research Journal for Engineering, Technology, and Sciences, 2018, 41( 1): 271– 277 (ASRJETS)
165 A Zamani, B M Montoya. Undrained monotonic shear response of MICP-treated silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144( 6): 04018029–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861
166 M Khamehchiyan, K Rowshanbakht, M R Nikudel, R H Sajedi. Biological improvement of sandy soil by microbial induced carbonate precipitation. Journal of Kerbala University, 2015, 100– 110
167 M S Pakbaz, H Behzadipour, G R Ghezelbash. Evaluation of shear strength parameters of sandy soils upon microbial treatment. Geomicrobiology Journal, 2018, 35( 8): 721– 726
https://doi.org/10.1080/01490451.2018.1455766
168 T Hoang, J Alleman, B Cetin, S G Choi. Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. Journal of Materials in Civil Engineering, 2020, 32( 4): 04020030–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003083
169 M J Cui, H J Lai, T Hoang, J Chu. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotechnica, 2021, 16( 2): 481– 489
https://doi.org/10.1007/s11440-020-01043-2
170 A Mahawish, A Bouazza, W P Gates. Improvement of coarse sand engineering properties by microbially induced calcite precipitation. Geomicrobiology Journal, 2018, 35( 10): 887– 897
https://doi.org/10.1080/01490451.2018.1488019
171 A Mahawish, A Bouazza, W P Gates. Factors affecting the bio-cementing process of coarse sand. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2019, 172( 1): 25– 36
172 A Mahawish, A Bouazza, W P Gates. Unconfined compressive strength and visualization of the microstructure of coarse sand subjected to different biocementation levels. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 8): 04019033–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002066
173 X Pan, J Chu, Y Yang, L Cheng. A new biogrouting method for fine to coarse sand. Acta Geotechnica, 2020, 15( 1): 1– 16
https://doi.org/10.1007/s11440-019-00872-0
174 M J Cui, J J Zheng, J Chu, C C Wu, H J Lai. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica, 2021, 16( 5): 1377– 1389
https://doi.org/10.1007/s11440-020-01099-0
175 W Deng, Y Wang. Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation. Advances in Civil Engineering, 2018, 2018 : 9590653–
https://doi.org/10.1155/2018/9590653
176 P Xiao, H Liu, A W Stuedlein, T M Evans, Y Xiao. Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 2019, 56( 12): 1849– 1862
https://doi.org/10.1139/cgj-2018-0573
177 P Xiao, H Liu, Y Xiao, A W Stuedlein, T M Evans. Liquefaction resistance of bio-cemented calcareous sand. Soil Dynamics and Earthquake Engineering, 2018, 107 : 9– 19
https://doi.org/10.1016/j.soildyn.2018.01.008
178 X Zhang, Y Chen, H Liu, Z Zhang, X Ding. Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dynamics and Earthquake Engineering, 2020, 129 : 105959–
https://doi.org/10.1016/j.soildyn.2019.105959
179 van der Star W R L, van Wijngaarden W K, van Paassen L A, van Baalen L R, Zwieten G. Stabilization of gravel deposits using microorganisms. In: Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering. Athens: Millpress, 2011
180 van Paassen L A, Hemert W J, Star W R L, Zwieten G V, Baalen L V. Direct shear strength of biologically cemented gravel. In: Proceedings of GeoCongress 2012. Oakland: American Society of Civil Engineers, 2012, 968–977
181 A Mahawish, A Bouazza, W P Gates. Effect of particle size distribution on the bio-cementation of coarse aggregates. Acta Geotechnica, 2018, 13( 4): 1019– 1025
https://doi.org/10.1007/s11440-017-0604-7
182 A Mahawish, A Bouazza, W P Gates. Strengthening crushed coarse aggregates using bio-grouting. Geomechanics and Geoengineering, 2019, 14( 1): 59– 70
https://doi.org/10.1080/17486025.2018.1521999
183 C Z Wu, J Chu, L Cheng, S F Wu. Biogrouting of aggregates using premixed injection method with or without pH adjustment. Journal of Materials in Civil Engineering, 2019, 31( 9): 06019008–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002874
184 Gomez M G, DeJong J T. Engineering properties of bio-cementation improved sandy soils. In: Grouting 2017. Honolulu: American Society of Civil Engineers, 2017, 23–33
185 H S Phadnis, J C Santamarina. Bacteria in sediments: Pore size effects. Géotechnique Letters, 2011, 1( 4): 91– 93
https://doi.org/10.1680/geolett.11.00008
186 G Ma, X He, X Jiang, H Liu, J Chu, Y Xiao. Strength and permeability of bentonite-assisted biocemented coarse sand. Canadian Geotechnical Journal, 2021, 58( 7): 969– 981
https://doi.org/10.1139/cgj-2020-0045
187 C Z Wu, J Chu. Biogrouting method for stronger bond strength for aggregates. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146( 11): 06020021–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002386
188 L Cheng, M A Shahin. Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 2016, 53( 9): 1376– 1385
https://doi.org/10.1139/cgj-2015-0635
189 Amarakoon G G N N, Kawasaki S. Factors affecting the improvement of sand properties treated with microbially-induced calcite precipitation. In: Geo-Chicago 2016. Chicago: American Society of Civil Engineers, 2016, 72–83
190 Q Zhao, L Li, C Li, M Li, F Amini, H Zhang. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. Journal of Materials in Civil Engineering, 2014, 26( 12): 04014094–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013
191 H Lin, M Suleiman, D Brown, E Jr Kavazanjian. Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142( 2): 04015066–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383
192 D Terzis, L Laloui. 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Scientific Reports, 2018, 8( 1): 1416–
https://doi.org/10.1038/s41598-018-19895-w
193 D Terzis, L Laloui. Cell-free soil bio-cementation with strength, dilatancy and fabric characterization. Acta Geotechnica, 2019, 14( 3): 639– 656
https://doi.org/10.1007/s11440-019-00764-3
194 N K Dhami, M S Reddy, A Mukherjee. Significant indicators for biomineralisation in sand of varying grain sizes. Construction & Building Materials, 2016, 104 : 198– 207
https://doi.org/10.1016/j.conbuildmat.2015.12.023
195 L Cheng, R Cord-Ruwisch, M A Shahin. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Canadian Geotechnical Journal, 2013, 50( 1): 81– 90
https://doi.org/10.1139/cgj-2012-0023
196 K Eryürük, S Yang, D Suzuki, I Sakaguchi, T Akatsuka, T Tsuchiya, A Katayama. Reducing hydraulic conductivity of porous media using CaCO 3 precipitation induced by Sporosarcina pasteurii. Journal of Bioscience and Bioengineering, 2015, 119( 3): 331– 336
https://doi.org/10.1016/j.jbiosc.2014.08.009
197 R Cardoso, R Pedreira, S O D Duarte, G A Monteiro. About calcium carbonate precipitation on sand biocementation. Engineering Geology, 2020, 271 : 105612–
https://doi.org/10.1016/j.enggeo.2020.105612
198 A Zamani, B M Montoya, M A Gabr. Investigating challenges of in situ delivery of microbial-induced calcium carbonate precipitation (MICP) in fine-grain sands and silty sand. Canadian Geotechnical Journal, 2019, 56( 12): 1889– 1900
https://doi.org/10.1139/cgj-2018-0551
199 Tsukamoto M, Oda K. Influence of relative density on microbial carbonate precipitation and mechanical properties of sand. In: Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: Presses des Ponts, 2013, 2613–2616
200 Cheng L, Shahin M A, Cord-Ruwisch R, Addis M, Hartanto T, Elms C. Soil stabilisation by microbial-induced calcite precipitation (micp): Investigation into some physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics: ICEG2014. Melbourne: Engineers Australia, 2014, 1105
201 K Rowshanbakht, M Khamehchiyan, R H Sajedi, M R Nikudel. Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological Engineering, 2016, 89 : 49– 55
https://doi.org/10.1016/j.ecoleng.2016.01.010
202 S M Lakshmi, J Mathura, U Gayathri, V J Vedhanayaghi. Enhancement of shear strength characteristics by microbial cementation in sand. International Journal of Innovative Research Explorer, 2019, 5( 6): 1– 11
203 C Song, D Elsworth, S Zhi, C Wang. The influence of particle morphology on microbially induced CaCO 3 clogging in granular media. Marine Georesources and Geotechnology, 2021, 39( 1): 74– 81
https://doi.org/10.1080/1064119X.2019.1677828
204 Gat D, Tsesarsky M, Wahanon A, Ronen Z. Ureolysis and MICP with model and native bacteria: Implications for treatment strategies. In: Proceedings of the 2014 Geo-Congress. Atlanta: American Society of Civil Engineers, 2014, 1713–1720
205 N Hataf, A Baharifard. Reducing soil permeability using microbial induced carbonate precipitation (MICP) method: A case study of shiraz landfill soil. Geomicrobiology Journal, 2020, 37( 2): 147– 158
https://doi.org/10.1080/01490451.2019.1678703
206 K Wen, Y Li, F Amini, L Li. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotechnica, 2020, 15( 1): 17– 27
https://doi.org/10.1007/s11440-019-00899-3
207 Y Z Wang, K Soga, J T DeJong, A Kabla. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: A particle-scale experimental study. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147( 6): 04021036–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002509
208 Y Zhao, C Fan, P Liu, H Fang, Z Huang. Effect of activated carbon on microbial-induced calcium carbonate precipitation of sand. Environmental Earth Sciences, 2018, 77( 17): 615–
https://doi.org/10.1007/s12665-018-7797-4
209 A I Omoregie, E A Palombo, D E L Ong, P M Nissom. A feasible scale-up production of Sporosarcina pasteurii using custom-built stirred tank reactor for in-situ soil biocementation. Biocatalysis and Agricultural Biotechnology, 2020, 24 : 101544–
https://doi.org/10.1016/j.bcab.2020.101544
210 Y Zhao, Z Xiao, J Lv, W Shen, R Xu. A novel approach to enhance the urease activity of Sporosarcina pasteurii and its application on microbial-induced calcium carbonate precipitation for sand. Geomicrobiology Journal, 2019, 36( 9): 819– 825
https://doi.org/10.1080/01490451.2019.1631911
211 V Achal, A Mukherjee, P C Basu, M S Reddy. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 2009, 36( 7): 981– 988
https://doi.org/10.1007/s10295-009-0578-z
212 C Bu, K Wen, S Liu, U Ogbonnaya, L Li. Development of bio-cemented constructional materials through microbial induced calcite precipitation. Materials and Structures, 2018, 51( 1): 30–
https://doi.org/10.1617/s11527-018-1157-4
213 Inagaki Y, Tsukamoto M, Mori H, Sasaki T, Soga K, Al Qabany A, Hata T. The influence of injection conditions and soil types on soil improvement by microbial functions. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4021–4030
214 M Li, K Wen, Y Li, L Zhu. Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiology Journal, 2018, 35( 1): 15– 22
https://doi.org/10.1080/01490451.2017.1303553
215 Mortensen B M, DeJong J T. Strength and stiffness of MICP treated sand subjected to various stress paths. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 4012–4020
216 S S Park, S G Choi, W J Kim, J C Lee. Effect of microbially induced calcite precipitation on strength of cemented sand. New Frontiers in Geotechnical Engineering GSP, 2017, 243 : 47– 56
217 D Terzis, R Bernier-Latmani, L Laloui. Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions. Géotechnique Letters, 2016, 6( 1): 50– 57
https://doi.org/10.1680/jgele.15.00134
218 H J Chen, Y H Huang, C C Chen, J P Maity, C Y Chen. Microbial induced calcium carbonate precipitation (MICP) using pig urine as an alternative to industrial urea. Waste and Biomass Valorization, 2019, 10( 10): 2887– 2895
https://doi.org/10.1007/s12649-018-0324-8
219 V Achal, X Pan. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 2014, 173( 1): 307– 317
https://doi.org/10.1007/s12010-014-0842-1
220 C M Gorospe, S H Han, S G Kim, J Y Park, C H Kang, J H Jeong, J S So. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering; BBE, 2013, 18( 5): 903– 908
https://doi.org/10.1007/s12257-013-0030-0
221 Y Zhang, H X Guo, X H Cheng. Role of calcium sources in the strength and microstructure of microbial mortar. Construction & Building Materials, 2015, 77 : 160– 167
https://doi.org/10.1016/j.conbuildmat.2014.12.040
222 Y Zhang, H X Guo, X H Cheng. Influences of calcium sources on microbially induced carbonate precipitation in porous media. Materials Research Innovations, 2014, 18( sup2): 79– 84
223 L Cheng, M A Shahin, R Cord-Ruwisch. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Geotechnique, 2014, 64( 12): 1010– 1013
https://doi.org/10.1680/geot.14.T.025
224 S Liang, J Chen, J Niu, X Gong, D Feng. Using recycled calcium sources to solidify sandy soil through microbial induced carbonate precipitation. Marine Georesources and Geotechnology, 2020, 38( 4): 393– 399
https://doi.org/10.1080/1064119X.2019.1575939
225 L Liu, H Liu, Y Xiao, J Chu, P Xiao, Y Wang. Biocementation of calcareous sand using soluble calcium derived from calcareous sand. Bulletin of Engineering Geology and the Environment, 2018, 77( 4): 1781– 1791
https://doi.org/10.1007/s10064-017-1106-4
226 A Al Qabany, K Soga. Effect of chemical treatment used in MICP on engineering properties of cemented soils. Geotechnique, 2013, 63( 4): 331– 339
https://doi.org/10.1680/geot.SIP13.P.022
227 H J Lai, M J Cui, S F Wu, Y Yang, J Chu. Retarding effect of concentration of cementation solution on biocementation of soil. Acta Geotechnica, 2021, 16( 5): 1457– 1472
https://doi.org/10.1007/s11440-021-01149-1
228 D Mujah, L Cheng, M A Shahin. Microstructural and geomechanical study on biocemented sand for optimization of MICP process. Journal of Materials in Civil Engineering, 2019, 31( 4): 04019025–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660
229 Velpuri N V P, Yu X, Lee H I, Chang W S. Influence factors for microbial-induced calcite precipitation in sands. In: Geo-China 2016. Shandong: American Society of Civil Engineers, 2016, 44–52
230 Mori D, Jyoti P, Thakur T, Masakapalli S K, Uday K V. Influence of cementing solution concentration on calcite precipitation pattern in biocementation. In: Advances in Computer Methods and Geomechanics. Singapore: Springer, 2020, 737–746
231 K Wen, Y Li, S Liu, C Bu, L Li. Development of an improved immersing method to enhance microbial induced calcite precipitation treated sandy soil through multiple treatments in low cementation media concentration. Geotechnical and Geological Engineering, 2019, 37( 2): 1015– 1027
https://doi.org/10.1007/s10706-018-0669-6
232 W Li, W S Chen, P P Zhou, S L Zhu, L J Yu. Influence of initial calcium ion concentration on the precipitation and crystal morphology of calcium carbonate induced by bacterial carbonic anhydrase. Chemical Engineering Journal, 2013, 218 : 65– 72
https://doi.org/10.1016/j.cej.2012.12.034
233 G D O Okwadha, J Li. Optimum conditions for microbial carbonate precipitation. Chemosphere, 2010, 81( 9): 1143– 1148
https://doi.org/10.1016/j.chemosphere.2010.09.066
234 L Cheng, M A Shahin, J Chu. Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotechnica, 2019, 14( 3): 615– 626
https://doi.org/10.1007/s11440-018-0738-2
235 L van Paassen, R Ghose, T van der Linden, W van der Star, M van Loosdrecht. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136( 12): 1721– 1728
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
236 V S Whiffin, L A van Paassen, M P Harkes. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 2007, 24( 5): 417– 423
https://doi.org/10.1080/01490450701436505
237 H Rong, C X Qian, L Li. Study on microstructure and properties of sandstone cemented by microbe cement. Construction & Building Materials, 2012, 36 : 687– 694
https://doi.org/10.1016/j.conbuildmat.2012.06.063
238 Ghasemi P, Zamani A, Montoya B. The effect of chemical concentration on the strength and erodibility of MICP treated sands. In: Eighth International Conference on Case Histories in Geotechnical Engineering. Philadelphia: American Society of Civil Engineers, 2019, 241–249
239 H A Keykha, A Asadi, M Zareian. Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil. Geomicrobiology Journal, 2017, 34( 10): 889– 894
https://doi.org/10.1080/01490451.2017.1291772
240 W Li, W S Chen, P P Zhou, L Cao, L J Yu. Influence of initial pH on the precipitation and crystal morphology of calcium carbonate induced by microbial carbonic anhydrase. Colloids and Surfaces. B, Biointerfaces, 2013, 102 : 281– 287
https://doi.org/10.1016/j.colsurfb.2012.08.042
241 M Seifan, A K Samani, A Berenjian. New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO 3). Applied Microbiology and Biotechnology, 2017, 101( 8): 3131– 3142
https://doi.org/10.1007/s00253-017-8109-8
242 Martinez B C, Barkouki T H, DeJong J D, Ginn T R. Upscaling of microbial induced calcite precipitation in 0.5 m columns: experimental and modeling results. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011: 4049–4059
243 H Rong, C Qian, L Li. Influence of molding process on mechanical properties of sandstone cemented by microbe cement. Construction & Building Materials, 2012, 28( 1): 238– 243
https://doi.org/10.1016/j.conbuildmat.2011.08.039
244 Al Qabany A, Mortensen B, Martinez B, Soga K, DeJong J. Microbial carbonate precipitation: correlation of S-wave velocity with calcite precipitation. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 3993–4001
245 L Cheng, R Cord-Ruwisch. In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 2012, 42 : 64– 72
https://doi.org/10.1016/j.ecoleng.2012.01.013
246 M J Cui, J J Zheng, R J Zhang, H J Lai, J Zhang. Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 2017, 12( 5): 971– 986
https://doi.org/10.1007/s11440-017-0574-9
247 M P Harkes, L A van Paassen, J L Booster, V S Whiffin, M C M van Loosdrecht. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 2010, 36( 2): 112– 117
https://doi.org/10.1016/j.ecoleng.2009.01.004
248 Z F Tian, X Tang, Z L Xiu, Z J Xue. Effect of different biological solutions on microbially induced carbonate precipitation and reinforcement of sand. Marine Georesources and Geotechnology, 2020, 38( 4): 450– 460
https://doi.org/10.1080/1064119X.2019.1595229
249 F Kalantary, M Kahani. Optimization of the biological soil improvement procedure. International Journal of Environmental Science and Technology, 2019, 16( 8): 4231– 4240
https://doi.org/10.1007/s13762-018-1821-9
250 B Martinez, J DeJong, T Ginn, B Montoya, T Barkouki, C Hunt, B Tanyu, D Major. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139( 4): 587– 598
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787
251 M J Cui, J J Zheng, R J Zhang, H J Lai. Soil bio-cementation using an improved 2-step injection method. Arabian Journal of Geosciences, 2020, 13( 23): 1270–
https://doi.org/10.1007/s12517-020-06168-y
252 A Al Qabany, K Soga, C Santamarina. Factors affecting efficiency of microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138( 8): 992– 1001
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666
253 Feng K, Montoya B M. Drained shear strength of MICP sand at varying cementation levels. In: Proceedings of the International Foundations Congress and Equipment Expo 2015. San Antonio: American Society of Civil Engineers, 2015, 2242–2251
254 Y Gao, L Hang, J He, J Chu. Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotechnica, 2019, 14( 3): 697– 707
https://doi.org/10.1007/s11440-018-0729-3
255 B M Montoya, J T DeJong, R W Boulanger. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Geotechnique, 2013, 63( 4): 302– 312
https://doi.org/10.1680/geot.SIP13.P.019
256 B Montoya, J DeJong. Stress-strain behavior of sands cemented by microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141( 6): 04015019–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302
257 Mujah D, Shahin M, Cheng L. Performance of biocemented sand under various environmental conditions. In: XVIII Brazilian Conference on Soil Mechanics and Geotechnical Engineering The Sustainable Future of Brazil goes through our Minas COBRAMSEG 2016. Belo Horizonte: Minas Gerais, 2016, 19–22
258 N J Jiang, H Yoshioka, K Yamamoto, K Soga. Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 2016, 90 : 96– 104
https://doi.org/10.1016/j.ecoleng.2016.01.073
259 B M Mortensen, M J Haber, J T DeJong, L F Caslake, D C Nelson. Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology, 2011, 111( 2): 338– 349
https://doi.org/10.1111/j.1365-2672.2011.05065.x
260 Cardoso R, Pedreira R, Duarte S, Monteiro G, Borges H, Flores-Colen I. Biocementation as rehabilitation technique of porous materials. In: Delgado JMPQ (ed) New Approaches to Building Pathology and Durability. Singapore: Springer Singapore, 2016, 99–120
261 Hata T, Tsukamoto M, Inagaki Y, Mori H, Kuwano R, Gourc J P. Evaluation of multiple soil improvement techniques based on microbial functions. In: Proceedings of Geo-Frontiers 2011. Dallas: American Society of Civil Engineers, 2011, 3945–3955
262 C Zhang, K Dehoff, N Hess, M Oostrom, T W Wietsma, A J Valocchi, B W Fouke, C J Werth. Pore-scale study of transverse mixing induced CaCO 3 precipitation and permeability reduction in a model subsurface sedimentary system. Environmental Science & Technology, 2010, 44( 20): 7833– 7838
https://doi.org/10.1021/es1019788
263 M Nemati, G Voordouw. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 2003, 33( 5): 635– 642
https://doi.org/10.1016/S0141-0229(03)00191-1
264 Y Yang, J Chu, Y Xiao, H Liu, L Cheng. Seepage control in sand using bioslurry. Construction & Building Materials, 2019, 212 : 342– 349
https://doi.org/10.1016/j.conbuildmat.2019.03.313
265 K Feng, B M Montoya. Quantifying level of microbial-induced cementation for cyclically loaded sand. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 6): 06017005–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682
266 M Simatupang, M Okamura. Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing. Soil and Foundation, 2017, 57( 4): 619– 631
https://doi.org/10.1016/j.sandf.2017.04.003
267 K M Darby, G L Hernandez, J T DeJong, R W Boulanger, M G Gomez, D W Wilson. Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 10): 04019084–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122
268 L Mele, J T Tian, S Lirer, A Flora, J Koseki. Liquefaction resistance of unsaturated sands: Experimental evidences and theoretical interpretation. Geotechnique, 2019, 69( 6): 541– 553
https://doi.org/10.1680/jgeot.18.P.042
269 Montoya B M, DeJong J T, Boulanger R W, Wilson D W, Gerhard R, Ganchenko A, Chou J C. Liquefaction mitigation using microbial induced calcite precipitation. In: Proceedings of GeoCongress 2012. Oakland: American Society of Civil Engineers, 2012, 1918–1927
270 Zamani A, Montoya B M. Shearing and Hydraulic Behavior of MICP Treated Silty Sand. In: Geotechnical Frontiers 2017. Orlando: American Society of Civil Engineers, 290–299
271 A Amaratunga, J Grozic. On the undrained unloading behaviour of gassy sands. Canadian Geotechnical Journal, 2009, 46( 11): 1267– 1276
https://doi.org/10.1139/T09-056
272 A B Fourie, B A Hofmann, R J Mikula, E R F Lord, P K Robertson. Partially saturated tailings sand below the phreatic surface. Geotechnique, 2001, 51( 7): 577– 585
https://doi.org/10.1680/geot.2001.51.7.577
273 J L Grozic, P Robertson, N Morgenstern. Cyclic liquefaction of loose gassy sand. Canadian Geotechnical Journal, 2000, 37( 4): 843– 856
https://doi.org/10.1139/t00-008
274 J He, J Chu. Undrained responses of microbially desaturated sand under monotonic loading. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140( 5): 04014003–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082
275 V Rebata-Landa, J C Santamarina. Mechanical effects of biogenic nitrogen gas bubbles in soils. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138( 2): 128– 137
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000571
276 L Y Wang, Paassen L A van, E Jr Kavazanjian. Feasibility study on liquefaction mitigation of fraser river sediments by microbial induced desaturation and precipitation (MIDP). Geo-Congress, 2020, 2020 : 121– 131
https://doi.org/10.1061/9780784482834.014
277 M Mirshekari, M Ghayoomi. Centrifuge tests to assess seismic site response of partially saturated sand layers. Soil Dynamics and Earthquake Engineering, 2017, 94 : 254– 265
https://doi.org/10.1016/j.soildyn.2017.01.024
278 O’Donnell S T, Kavazanjian Jr E. The effect of desaturation on the static and cyclic mechanical response of dense sand. In: International Foundation Congress and Equipment Expo 2018. Orlando: American Society of Civil Engineers, 2018, 232–241
279 M Okamura, Y Soga. Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand. Soil and Foundation, 2006, 46( 5): 695– 700
https://doi.org/10.3208/sandf.46.695
280 L Y Wang, L A van Paassen, Y Q Gao, J He, Y F Gao, D Kim. Laboratory tests on mitigation of soil liquefaction using microbial induced desaturation and precipitation. Geotechnical Testing Journal, 2021, 44( 2): 520– 534
https://doi.org/10.1520/GTJ20190432
281 J Yang, S Savidis, M Roemer. Evaluating liquefaction strength of partially saturated sand. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130( 9): 975– 979
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975)
282 B Zhang, K K Muraleetharan, C Liu. Liquefaction of Unsaturated Sands. International Journal of Geomechanics, 2016, 16( 6): D4015002–
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000605
283 J He, J Chu, V Ivanov. Remediation of liquefaction potential of sand using the biogas method. Geo-congress, 2013, 2013 : 879– 887
https://doi.org/10.1061/9780784412787.090
284 Wu S F. Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method. Dissertation for the Doctoral Degree. Iowa State University, Ames, 2015
285 Kavazanjian E Jr, O’Donnell S T. Mitigation of earthquake-induced liquefaction via microbial denitrification: A two-phase process. IFCEE 2015, 2286–2295
286 A Nakano. Microbe-induced desaturation of sand using pore pressure development via denitrification. Géotechnique Letters, 2018, 8( 1): 1– 4
https://doi.org/10.1680/jgele.17.00039
287 K Wang, J Chu, S Wu, J He. Stress–strain behaviour of bio-desaturated sand under undrained monotonic and cyclic loading. Geotechnique, 2021, 71( 6): 521– 533
https://doi.org/10.1680/jgeot.19.P.080
288 Hall C, Hernandez G, Darby K M, van Paassen L, Kavazanjian E, DeJong J, Wilson D. Centrifuge model testing of liquefaction mitigation via denitrification-induced desaturation. In: Proceedings of Geotechnical Earthquake Engineering and Soil Dynamics IV. Sacramento: American Society of Civil Engineers, 2018, 117–126
289 V P Pham, L A van Paassen, W R L van der Star, T J Heimovaara. Evaluating strategies to improve process efficiency of denitrification-based MICP. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144( 8): 04018049–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001909
290 Filet A, Gadret J, Loygue M, Borel S. Biocalcis and its applications for the consolidation of sands. In: Proceedings of the Fourth International Conference on Grouting and Deep Mixing. New Orleans: American Society of Civil Engineers, 2012, 1767–1780
291 van Paassen L A, Harkes M P, van Zwieten G A, van der Zon W H, van der Star W R L, van Loosdrecht M C M. Scale up of BioGrout: A biological ground reinforcement method. In: Proceedings of the 17th international conference on soil mechanics and geotechnical engineering. Lansdale: IOS Press, 2009, 2328–2333
292 van Paassen L. Bio-mediated ground improvement: from laboratory experiment to pilot applications. In: Geo-Frontiers 2011: Advances in Geotechnical Engineering. Dallas: American Society of Civil Engineers, 2011, 4099–4108
293 S F Wu, B Li, J Chu. Large-scale model tests of biogrouting for sand and rock. Proceedings of the Institution of Civil Engineers—Ground Improvement, 2019, 1– 10
294 Johnston C, Trefry M, Rayner J, Ragusa S, De Zoysa D, Davis G. In situ bioclogging for the confinement and remediation of groundwater hydrocarbon plumes. In: Proceedings of the 1999 contaminated site remediation conference. Fremantle: Centre for Groundwater Studies, 1999
295 N Ross, G Bickerton. Application of biobarriers for groundwater containment at fractured bedrock sites. Remediation Journal, 2002, 12( 3): 5– 21
https://doi.org/10.1002/rem.10031
296 F Castegnier, N Ross, R P Chapuis, L Deschênes, R Samson. Long-term persistence of a nutrient-starved biofilm in a limestone fracture. Water Research, 2006, 40( 5): 925– 934
https://doi.org/10.1016/j.watres.2005.12.038
297 Blauw M, Lambert J, Latil M N. Biosealing: A method for in situ sealing of leakages. In: Proceedings of the International Symposium on Ground Improvement Technologies and Case Histories. Singapore: Research Publishing Services, 2009
298 Lambert J, Novakowski K, Blauw M, Latil M, Knight L, Bayona L. Pamper bacteria, they will help us: application of biochemical mechanisms in geo-environmental engineering. In: GeoFlorida 2010: Advances in Analysis, Modeling & Design. Florida: American Society of Civil Engineers, 2010, 618–627
299 M O Cuthbert, L A McMillan, S Handley-Sidhu, M S Riley, D J Tobler, V R Phoenix. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environmental Science & Technology, 2013, 47( 23): 13637– 13643
https://doi.org/10.1021/es402601g
300 A J Phillips, A B Cunningham, R Gerlach, R Hiebert, C Hwang, B P Lomans, J Westrich, C Mantilla, J Kirksey, R Esposito, L Spangler. Fracture sealing with microbially-induced calcium carbonate precipitation: A field study. Environmental Science & Technology, 2016, 50( 7): 4111– 4117
https://doi.org/10.1021/acs.est.5b05559
301 A J Phillips, E Troyer, R Hiebert, C Kirkland, R Gerlach, A B Cunningham, L Spangler, J Kirksey, W Rowe, R Esposito. Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration. Journal of Petroleum Science Engineering, 2018, 171 : 1141– 1148
https://doi.org/10.1016/j.petrol.2018.08.012
302 M G Gomez, B C Martinez, J T DeJong, C E Hunt, L A deVlaming, D W Major, S M Dworatzek. Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2015, 168( 3): 206– 216
https://doi.org/10.1680/grim.13.00052
303 M G Gomez, C M Anderson, C M R Graddy, J T DeJong, D C Nelson, T R Ginn. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143( 5): 04016124–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640
304 M G Gomez, J T DeJong, C M Anderson. Effect of bio-cementation on geophysical and cone penetration measurements in sands. Canadian Geotechnical Journal, 2018, 55( 11): 1632– 1646
https://doi.org/10.1139/cgj-2017-0253
305 M G Gomez, C M R Graddy, J T DeJong, D C Nelson. Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms. Scientific Reports, 2019, 9( 1): 11517–
https://doi.org/10.1038/s41598-019-47973-0
306 A I Omoregie, E A Palombo, D E L Ong, P M Nissom. Biocementation of sand by Sporosarcina pasteurii strain and technical-grade cementation reagents through surface percolation treatment method. Construction & Building Materials, 2019, 228 : 116828–
https://doi.org/10.1016/j.conbuildmat.2019.116828
307 A I Omoregie, L H Ngu, D E L Ong, P M Nissom. Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) application. Biocatalysis and Agricultural Biotechnology, 2019, 17 : 247– 255
https://doi.org/10.1016/j.bcab.2018.11.030
308 M Kahani, F Kalantary, M R Soudi, L Pakdel, S Aghaalizadeh. Optimization of cost effective culture medium for Sporosarcina pasteurii as biocementing agent using response surface methodology: Up cycling dairy waste and seawater. Journal of Cleaner Production, 2020, 253 : 120022–
https://doi.org/10.1016/j.jclepro.2020.120022
309 R A N Dilrukshi, K Nakashima, S Kawasaki. Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soil and Foundation, 2018, 58( 4): 894– 910
https://doi.org/10.1016/j.sandf.2018.04.003
310 N Hamdan, E Jr Kavazanjian. Enzyme-induced carbonate mineral precipitation for fugitive dust control. Geotechnique, 2016, 66( 7): 546– 555
https://doi.org/10.1680/jgeot.15.P.168
311 Kavazanjian E Jr, Almajed A, Hamdan N. Bio-inspired soil improvement using EICP soil columns and soil nails. In: Grouting 2017. Honolulu: American Society of Civil Engineers, 2017, 13–22
312 A Nafisi, S Safavizadeh, B M Montoya. Influence of microbe and enzyme-induced treatments on cemented sand shear response. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145( 9): 06019008–
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111
313 Y Gao, J He, X Tang, J Chu. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soil and Foundation, 2019, 59( 5): 1631– 1637
https://doi.org/10.1016/j.sandf.2019.03.014
314 I H Nam, C M Chon, K Y Jung, S G Choi, H Choi, S S Park. Calcite precipitation by ureolytic plant ( Canavalia ensiformis) extracts as effective biomaterials. KSCE Journal of Civil Engineering, 2015, 19( 6): 1620– 1625
https://doi.org/10.1007/s12205-014-0558-3
315 S S Park, S G Choi, I H Nam. Effect of plant-induced calcite precipitation on the strength of sand. Journal of Materials in Civil Engineering, 2014, 26( 8): 06014017–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029
316 R A N Dilrukshi, J Watanabe, S Kawasaki. Strengthening of sand cemented with calcium phosphate compounds using plant-derived urease. International Journal of Geomate, 2016, 11( 25): 2461– 2467
https://doi.org/10.21660/2016.25.5149
317 V P Pham, A Nakano, W R L van der Star, T J Heimovaara, L A van Paassen. Applying MICP by denitrification in soils: a process analysis. Environmental Geotechnics, 2018, 5( 2): 79– 93
https://doi.org/10.1680/jenge.15.00078
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed