Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (5): 1097-1110   https://doi.org/10.1007/s11709-021-0766-0
  本期目录
A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021
Xinzheng LU1(), Hong GUAN2, Hailin SUN3, Yi LI4, Zhe ZHENG1, Yifan FEI1, Zhi YANG2,4, Lingxiao ZUO3
1. Key Laboratory of Civil Engineering Safety and Durability of Ministry of Education, Tsinghua University, Beijing 100084, China
2. School of Engineering and Built Environment, Griffith University Gold Coast Campus, Queensland 4222, Australia
3. China Architecture Design & Research Group Co., Ltd, Beijing 100044, China
4. Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China
 全文: PDF(56569 KB)   HTML
Abstract

On June 24, 2021, a 40-year-old reinforced concrete flat plate structure building in Miami suffered a sudden partial collapse. This study analyzed the overall performance and key components of the collapsed building based on the building design codes (ACI-318 and GB 50010). Punching shear and post-punching performances of typical slab-column joints are also studied through the refined finite element analysis. The collapse process was simulated and visualized using a physics engine. By way of these analyses, weak design points of the collapsed building are highlighted. The differences between the reinforcement detailing of the collapsed building and the requirements of the current Chinese code are discussed, together with a comparison of the punching shear and post-punching performances. The simulated collapse procedure and debris distribution are compared with the actual collapse scenes.

Key wordsprogressive collapse    flat plate    simulation    punching
收稿日期: 2021-07-04      出版日期: 2021-11-29
Corresponding Author(s): Xinzheng LU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1097-1110.
Xinzheng LU, Hong GUAN, Hailin SUN, Yi LI, Zhe ZHENG, Yifan FEI, Zhi YANG, Lingxiao ZUO. A preliminary analysis and discussion of the condominium building collapse in surfside, Florida, US, June 24, 2021. Front. Struct. Civ. Eng., 2021, 15(5): 1097-1110.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0766-0
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I5/1097
Fig.1  
story number elevation H (m) story height (m) concrete strength of the slab (MPa) concrete strength of wall and column (MPa)
basement ? ? 27.58 41.37
?1 ?3.378 3.378 27.58 41.37
1 ±0.000 4.166 27.58 41.37
2 4.166 2.693 27.58 41.37
3 6.859 2.693 27.58 41.37
4 9.552 2.693 27.58 34.47
5 12.245 2.693 27.58 34.47
6 14.938 2.693 27.58 34.47
7 17.631 2.693 27.58 34.47
8 20.324 2.693 27.58 27.58
9 23.017 2.693 20.68 27.58
10 25.710 2.693 20.68 27.58
11 28.403 2.693 20.68 27.58
12 31.096 2.693 20.68 27.58
roof 33.789 2.693 20.68 27.58
elevator roof 38.463 4.674 20.68 27.58
Tab.1  
Fig.2  
concrete strength (MPa) dead load in addition to slab self-weight (kN/m 2) dead load of walls (kN/m2) live load (kN/m2) punching load (kN) punching resistance (kN)
1.2D + 1.6L 1.3D + 1.7L 1.3D + 1.5L 1.0D + 1.0L ACI-318 [ 7] GB 50010 [ 8]
27.58 1.0 1.5 2 534.1 575.7 558.0 421.6 449.5 357.9
0.5 1.0 480.9 518.1 500.3 376.7
0.3 0.5 443.7 477.7 460.0 345.2
0.0 0.0 405.6 436.4 418.5 309.2
20.68 1.0 1.5 2 540.0 582.0 564.1 421.6 519.0 429.0
0.5 1.0 486.2 523.8 505.8 376.7
0.3 0.5 448.6 483.0 465.1 345.2
0.0 0.0 405.6 436.4 418.5 309.2
Tab.2  
concrete strength (MPa) design axial strength in Chinese code (MPa) demand-capacity ratio
Chinese code [ 8] 1.2D + 1.6L 1.3D + 1.7L 1.0D + 1.0L
27.58 16.45 1.14 1.00 1.07 0.50
34.47 20.34 1.55 1.34 1.42 0.67
41.37 23.85 1.84 1.56 1.66 0.78
Tab.3  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
type span length (mm) concrete cover (mm) column (mm) slab thickness (mm)
collapsed structure 6660 19 356 × 457 203
numerical model 360 × 460 200
Tab.4  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
1 Wikipedia. Surfside Condominium Collapse. 2021
2 B R Ellingwood. Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 2006, 20( 4): 315– 323
https://doi.org/10.1061/(asce)0887-3828(2006)20:4(315)
3 S King, N J Delatte. Collapse of 2000 Commonwealth Avenue: Punching shear case study. Journal of Performance of Constructed Facilities, 2004, 18( 1): 54– 61
https://doi.org/10.1061/(asce)0887-3828(2004)18:1(54)
4 N J Gardner, J Huh, L Chung. Lessons from the Sampoong department store collapse. Cement and Concrete Composites, 2002, 24( 6): 523– 529
https://doi.org/10.1016/s0958-9465(01)00068-3
5 Muttoni A, Ruiz M F, Fürst A, Guandalini S, Hunkeler F, Moser K, Seiler H. Structural Safety of Parking Garages. Documentation D 0226 Sia. Zürich: Swiss Society of Engineers and Architects, 2008
6 Swaine J, Shammas B, Lee J S, Mirza A, Brown E, Brittain A. Video, Images and Interviews Deepen Questions about Role of Pool Deck in Condo Collapse. 2021
7 ACI-318. Building Code Requirements for Structural Concrete. Farmington Hills: American Concrete Institute, 2019
8 GB 50010. Code for Design of Concrete Structure. Beijing: China Architecture & Building Press, 2010
9 H Z Xue, B P Gilbert, H Guan, X Z Lu, Y Li, F Ma, Y Tian. Load transfer and collapse resistance of RC flat plates under interior column removal scenario. Journal of Structural Engineering, 2018, 144( 7): 04018087–
https://doi.org/10.1061/(asce)st.1943-541x.0002090
10 H Z Xue, H Guan, B P Gilbert, X Z Lu, Y Li. Comparative and parametric studies on behavior of RC-flat plates subjected to interior-column loss. Journal of Structural Engineering, 2020, 146( 9): 04020183–
https://doi.org/10.1061/(asce)st.1943-541x.0002757
11 H Z Xue, H Guan, B P Gilbert, X Z Lu, Y Li. Simulation of punching and post-punching shear behaviours of RC slab–column connections. Magazine of Concrete Research, 2021, 1– 16
12 F H Ma, B P Gilbert, H Guan, H Z Xue, X Z Lu, Y Li. Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 2019, 180 : 728– 741
https://doi.org/10.1016/j.engstruct.2018.11.043
13 F H Ma, B P Gilbert, H Guan, X Z Lu, Y Li. Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to edge-column and edge-interior-column removal scenarios. Engineering Structures, 2020, 209 : 110299–
https://doi.org/10.1016/j.engstruct.2020.110299
14 M Z Diao, Y Li, H Guan, X Z Lu, H Z Xue, Z Hao. Post-punching mechanisms of slab–column joints under upward and downward punching actions. Magazine of Concrete Research, 2021, 73( 6): 302– 314
15 Y Z Yang, Y Li, H Guan, M Diao, X Z Lu. Enhancing post-punching performance of flat plate-column joints by different reinforcement configurations. Journal of Building Engineering, 2021, 43 : 102855–
https://doi.org/10.1016/j.jobe.2021.102855
16 Diao M Z. Punching and post-punching shear behaviour of interior RC slab-column joints with in-plane constraints. Dissertation for the Doctoral Degree. Queensland: Griffith University, 2021
17 X L Gu, X L Wang, X J Yin, F Lin, J Hou. Collapse simulation of reinforced concrete moment frames considering impact actions among blocks. Engineering Structures, 2014, 65 : 30– 41
https://doi.org/10.1016/j.engstruct.2014.01.046
18 Z Lu, X D He, Y Zhou. Discrete element method-based collapse simulation, validation and application to frame structures. Structure and Infrastructure Engineering, 2018, 14( 5): 538– 549
https://doi.org/10.1080/15732479.2017.1373133
19 H M Salem, A K El-Fouly, H S Tagel-Din. Toward an economic design of reinforced concrete structures against progressive collapse. Engineering Structures, 2011, 33( 12): 3341– 3350
https://doi.org/10.1016/j.engstruct.2011.06.020
20 C Grunwald, A A Khalil, B Schaufelberger, E M Ricciardi, C Pellecchia, E De Iuliis, W Riedel. Reliability of collapse simulation—Comparing finite and applied element method at different levels. Engineering Structures, 2018, 176 : 265– 278
https://doi.org/10.1016/j.engstruct.2018.08.068
21 Y Li, X Lu, H Guan, L Ye. Progressive collapse resistance demand of reinforced concrete frames under catenary mechanism. ACI Structural Journal, 2014, 111( 5): 1225– 1234
https://doi.org/10.14359/51687029
22 X Z Lu, K Q Lin, Y Li, H Guan, P Q Ren, Y Zhou. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario. Engineering Structures, 2017, 149 : 91– 103
https://doi.org/10.1016/j.engstruct.2016.07.039
23 T Yang, Z Q Han, N C Deng, W Chen. Collapse responses of concrete frames reinforced with BFRP bars in middle column removal scenario. Applied Sciences, 2019, 9( 20): 4436–
24 X X Chen, W Xie, Y F Xiao, Y Chen, X Li. Progressive collapse analysis of SRC frame-RC core tube hybrid structure. Applied Sciences, 2018, 8( 11): 2316–
25 D C Feng, C Kolay, J M Ricles, J Li. Collapse simulation of reinforced concrete frame structures. Structural Design of Tall and Special Buildings, 2016, 25( 12): 578– 601
https://doi.org/10.1002/tal.1273
26 X Lu, X Z Lu, W K Zhang, L P Ye. Collapse simulation of a super high-rise building subjected to extremely strong earthquakes. Science China. Technological Sciences, 2011, 54( 10): 2549– 2560
https://doi.org/10.1007/s11431-011-4548-0
27 X Z Lu, X Lu, H Guan, W Zhang, L P Ye. Earthquake-induced collapse simulation of a super-tall mega-braced frame-core tube building. Journal of Constructional Steel Research, 2013, 82 : 59– 71
https://doi.org/10.1016/j.jcsr.2012.12.004
28 X Z Lu, Y Tian, S Cen, H Guan, L L Xie, L S Wang. A high-performance quadrilateral flat shell element for seismic collapse simulation of tall buildings and its implementation in OpenSees. Journal of Earthquake Engineering, 2018, 22( 9): 1662– 1682
https://doi.org/10.1080/13632469.2017.1297269
29 D Hartmann, M Breidt, V Nguyen, F Stangenberg, S Höhler, K Schweizerhof, S Mattern, G Blankenhorn, B Möller, M Liebscher. Structural collapse simulation under consideration of uncertainty—Fundamental concept and results. Computers & Structures, 2008, 86( 21−22): 2064– 2078
https://doi.org/10.1016/j.compstruc.2008.03.004
30 Millington I. Game Physics Engine Development. Boca Raton: CRC Press, 2007
31 Z Xu, X Z Lu, H Guan, A Ren. Physics engine-driven visualization of deactivated elements and its application in bridge collapse simulation. Automation in Construction, 2013, 35 : 471– 481
https://doi.org/10.1016/j.autcon.2013.06.006
32 Zhou B J, Jia Q L, Chen Z J. The research and development of the erthquake ruins computer aided design system for rescue training. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE). Changsha: IEEE, 2017: 1303–1307
33 Z Xu, X Z Lu, H Guan, B Han, A Ren. Seismic damage simulation in urban areas based on a high-fidelity structural model and a physics engine. Natural Hazards, 2014, 71( 3): 1679– 1693
https://doi.org/10.1007/s11069-013-0972-8
34 Oliver W, Kostack K. Final Release of the Blender and Bullet Physics Engine Based on Fast on-site Assessment Tool. 2017
35 Kostack Studio. Christchurch Earthquake Simulation & Pyne Gould Building Collapse. 2016
36 Z Zheng, Y Tian, Z B Yang, X Z Lu. Hybrid framework for simulating building collapse and ruin scenarios using finite element method and physics engine. Applied Sciences, 2020, 10( 12): 4408–
37 Town of Surfside. Champlain Towers Public Records Documents. 2021
38 LSTC. LS-DYNA Keyword User’s Manual. Livermore: Livermore Software Technology Corporation, 2015
39 FIB. Model Code for Concrete Structures 2010. Berlin: International Federation for Structural Concrete, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed