Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (5): 1292-1299   https://doi.org/10.1007/s11709-021-0771-3
  本期目录
A multiscale material model for heterogeneous liquid droplets in solid soft composites
Hamid GHASEMI()
Department of Mechanical Engineering, Arak University of Technology, Arak 38181-41167, Iran
 全文: PDF(16105 KB)   HTML
Abstract

Liquid droplets in solid soft composites have been attracting increasing attention in biological applications. In contrary with conventional composites, which are made of solid elastic inclusions, available material models for composites including liquid droplets are for highly idealized configurations and do not include all material real parameters. They are also all deterministic and do not address the uncertainties arising from droplet radius, volume fraction, dispersion and agglomeration. This research revisits the available models for liquid droplets in solid soft composites and presents a multiscale computational material model to determine their elastic moduli, considering nearly all relevant uncertainties and heterogeneities at different length scales. The effects of surface tension at droplets interface, their volume fraction, size, size polydispersity and agglomeration on elastic modulus, are considered. Different micromechanical material models are incorporated into the presented computational framework. The results clearly indicate both softening and stiffening effects of liquid droplets and show that the model can precisely predict the effective properties of liquid droplets in solid soft composites.

Key wordsliquid in solid    soft composite    computational modeling    multiscale model    heterogeneity
收稿日期: 2021-07-14      出版日期: 2021-11-29
Corresponding Author(s): Hamid GHASEMI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1292-1299.
Hamid GHASEMI. A multiscale material model for heterogeneous liquid droplets in solid soft composites. Front. Struct. Civ. Eng., 2021, 15(5): 1292-1299.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0771-3
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I5/1292
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 H Ghasemi, H S Park, T Rabczuk. A multi-material level-set based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering, 2018, 332 : 47– 62
https://doi.org/10.1016/j.cma.2017.12.005
2 H Ghasemi, P Kerfriden, S P A Bordas, J Muthu, G Zi, T Rabczuk. Probabilistic multiconstraints optimization of cooling channels in ceramic matrix composites. Composites. Part B, Engineering, 2015, 81 : 107– 119
https://doi.org/10.1016/j.compositesb.2015.06.023
3 H Ghasemi, R Brighenti, X Zhuang, J Muthu, T Rabczuk. Optimization of fiber distribution in fiber reinforced composite by using NURBS functions. Computational Materials Science, 2014, 83 : 463– 473
https://doi.org/10.1016/j.commatsci.2013.11.032
4 E Brown, N R Sottos, S R White. Fracture testing of a self-healing polymer composite. Experimental Mechanics, 2002, 42( 4): 372– 379
https://doi.org/10.1007/BF02412141
5 P Dong, A C Chipara, P Loya, Y Yang, L Ge, S Lei, B Li, G Brunetto, L D Machado, L Hong, Q Wang, B Yang, H Guo, E Ringe, D S Galvao, R Vajtai, M Chipara, M Tang, J Lou, P M Ajayan. Solid–liquid self-adaptive polymeric composite. ACS Applied Materials & Interfaces, 2016, 8( 3): 2142– 2147
https://doi.org/10.1021/acsami.5b10667
6 A Agrawal, A C Chipara, Y Shamoo, P K Patra, B J Carey, P M Ajayan, W G Chapman, R Verduzco. Dynamic self-stiffening in liquid crystal elastomers. Nature Communications, 2013, 4( 1): 1739–
https://doi.org/10.1038/ncomms2772
7 T Q Thai, T Rabczuk, X Zhuang. A large deformation isogeometric approach for flexoelectricity and soft materials. Computer Methods in Applied Mechanics and Engineering, 2018, 341 : 718– 739
https://doi.org/10.1016/j.cma.2018.05.019
8 S. Ghasemi H. Park H, Zhuang X, Rabczuk T. Three-dimensional isogeometric analysis of flexoelectricity with MATLAB implementation. Computers, Materials & Continua, 2020, 65( 2): 1157– 1179
https://doi.org/10.32604/cmc.2020.08358
9 Voigt W. On the relationship between the two elastic constants of isotropic bodies. Annals of Physics, 1889, 274(12): 573–587 (in Germen)
10 A Reuss. Calculation of the yield point of mixed crystals based on the plasticity condition for single crystals. Journal of Applied Mathematics and Mechanics, 1929, 9( 1): 49– 58
https://doi.org/10.1002/zamm.19290090104(inGerman
11 Z Hashin, S Shtrikman. A variational approach to the theory of elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 1963, 11( 2): 127– 140
https://doi.org/10.1016/0022-5096(63)90060-7
12 B Paul. Prediction of elastic constants of multiphase materials. Transactions of the Metallurgical Society of AIME, 1960, 36– 41
13 R Hill. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 1965, 13( 4): 213– 222
https://doi.org/10.1016/0022-5096(65)90010-4
14 T Mori, K Tanaka. Average stress in matrix and average elastic energy of materials with mis-fitting inclusions. Acta Metallurgica, 1973, 21( 5): 571– 574
https://doi.org/10.1016/0001-6160(73)90064-3
15 N Nasser, S M Hori. Micromechanics: Overall Properties of Heterogeneous Solids. Amsterdam: Elsevier, 1993
16 X L Gao, H M Ma. Solution of Eshelby’s inclusion problem with a bounded domain and Eshelby’s tensor for a spherical inclusion in a finite spherical matrix based on a simplified strain gradient elasticity theory. Journal of the Mechanics and Physics of Solids, 2010, 58( 5): 779– 797
https://doi.org/10.1016/j.jmps.2010.01.006
17 Engquist B, Runborg O. Wavelet-based numerical homogenization with applications. In: Barth T J, Chan T, Haimes R, eds. Multiscale and Multiresolution Methods. Berlin: Springer Heidelberg, 2002, 97–148
18 M Brewster, G Beylkin. A multiresolution strategy for numerical homogenization. Applied and Computational Harmonic Analysis, 1995, 2( 4): 327– 349
https://doi.org/10.1006/acha.1995.1024
19 H Yousefi, J Farjoodi, I Mahmoudzadeh Kani. Adaptive simulation of wave propagation problems including dislocation sources and random media. Frontiers of Structural and Civil Engineering, 2019, 13( 5): 1054– 1081
https://doi.org/10.1007/s11709-019-0536-4
20 M Salavati, H Ghasemi, T Rabczuk. Electromechanical properties of Boron Nitride Nanotube: Atomistic bond potential and equivalent mechanical energy approach. Computational Materials Science, 2018, 149 : 460– 465
https://doi.org/10.1016/j.commatsci.2018.03.037
21 A Abbès, B Abbès, R Benkabou, A Asroun. A FEM multiscale homogenization procedure using nanoindentation for high performance concrete. Journal of Applied and Computational Mechanics, 2020, 6( 3): 493– 504
https://doi.org/10.22055/JACM.2019.29832.1640
22 M Kamiński. Homogenization-based finite element analysis of unidirectional composites by classical and multiresolutional techniques. Computer Methods in Applied Mechanics and Engineering, 2005, 194( 18−20): 2147– 2173
https://doi.org/10.1016/j.cma.2004.07.030
23 S Yi, L Xu, G Cheng, Y Cai. FEM formulation of homogenization method for effective properties of periodic heterogeneous beam and size effect of basic cell in thickness direction. Computers & Structures, 2015, 156 : 1– 11
https://doi.org/10.1016/j.compstruc.2015.04.010
24 R W Style, J S Wettlaufer, E R Dufresne. Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter, 2015, 11( 4): 672– 679
https://doi.org/10.1039/C4SM02413C
25 R W Style, R Tutika, J Y Kim, M D Bartlett. Solid–liquid composites for soft multifunctional materials. Advanced Functional Materials, 2021, 31( 1): 2005804–
https://doi.org/10.1002/adfm.202005804
26 P A Toulemonde, J Diani, P Gilormini, N Desgardin. A numerical study of the influence of polydispersity on the behaviour until break of a reinforced hyperelastic material with a cohesive interface. Matériaux & Techniques, 2015, 103( 3): 306–
https://doi.org/10.1051/mattech/2015026
27 X A Zhong, W Knauss. Effects of particle interaction and size variation on damage evolution in filled elastomers. Mechanics of Advanced Materials and Structures, 2000, 7( 1): 35– 53
https://doi.org/10.1080/107594100305410
28 M M Shokrieh, R Rafiee. Stochastic multi-scale modeling of CNT/polymer composites. Computational Materials Science, 2010, 50( 2): 437– 446
https://doi.org/10.1016/j.commatsci.2010.08.036
29 H Ghasemi, R Rafiee, X Zhuang, J Muthu, T Rabczuk. Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 2014, 85 : 295– 305
https://doi.org/10.1016/j.commatsci.2014.01.020
30 H L Duan, X Yi, Z P Huang, J A Wang. Unified scheme for prediction of effective modulus of multiphase composites with interface effects, Part I: Theoretical framework. Mechanics of Materials, 2007, 39( 1): 81– 93
https://doi.org/10.1016/j.mechmat.2006.02.009
31 R Style, R Boltyanskiy, B Allen, K E Jensen, H P Foote, J S Wettlaufer, E R Dufresne. Stiffening solids with liquid inclusions. Nature Physics, 2015, 11( 1): 82– 87
https://doi.org/10.1038/nphys3181
32 F Mancarella, R W Style, J S Wettlaufer. Surface tension and the Mori–Tanaka theory of non-dilute soft composite solids. Mathematical, Physical and Engineering Sciences, 2016, 472( 2189): 20150853–
https://doi.org/10.1098/rspa.2015.0853
33 J C Halpin, S W Tsai. Effects of Environmental Factors on composite materials. Air Force Materials Lab Wright-Patterson AFB OH, 1969, 67 : 423–
https://doi.org/10.21236/AD0692481
34 T Thorvaldsen, B B Johnsen, T Olsen, F K Hansen. Investigation of theoretical models for the elastic stiffness of nanoparticle-modified polymer composites. Journal of Nanomaterials, 2015, 281308–
https://doi.org/10.1155/2015/281308
35 D L Shi, X Q Feng, Y Y Huang, K C Hwang, H Gao. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composite. Journal of Engineering Materials and Technology, 2004, 126( 3): 250– 257
https://doi.org/10.1115/1.1751182
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed