Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2021, Vol. 15 Issue (5): 1222-1237   https://doi.org/10.1007/s11709-021-0773-1
  本期目录
Analysis of stress and failure in rock specimens with closed and open flaws on the surface
Amin MANOUCHEHRIAN(), Pinnaduwa H.S.W. KULATILAKE
School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
 全文: PDF(30318 KB)   HTML
Abstract

The influence of closed and open surface flaws on the stress distribution and failure in rock specimens is investigated. Heterogeneous finite element models are developed to simulate the compression tests on flawed rock specimens. The simulated specimens include those with closed flaws and those with open flaws on the surface. Systematic analyses are conducted to investigate the influences of the flaw inclination, friction coefficient and the confining stress on failure behavior. Numerical results show significant differences in the stress, displacement, and failure behavior of the closed and open flaws when they are subjected to pure compression; however, their behaviors under shear and tensile loads are similar. According to the results, when compression is the dominant mode of stress applied to the flaw surface, an open flaw may play a destressing role in the rock and relocate the stress concentration and failure zones. The presented results in this article suggest that failure at the rock surface may be managed in a favorable manner by fabricating open flaws on the rock surface. The insights gained from this research can be helpful in managing failure at the boundaries of rock structures.

Key wordssurface flaw    heterogeneity    circular hole    numerical modeling    relative displacement
收稿日期: 2021-06-16      出版日期: 2021-11-29
Corresponding Author(s): Amin MANOUCHEHRIAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2021, 15(5): 1222-1237.
Amin MANOUCHEHRIAN, Pinnaduwa H.S.W. KULATILAKE. Analysis of stress and failure in rock specimens with closed and open flaws on the surface. Front. Struct. Civ. Eng., 2021, 15(5): 1222-1237.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0773-1
https://academic.hep.com.cn/fsce/CN/Y2021/V15/I5/1222
Fig.1  
parameter mineral
feldspar quartz biotite
density, ρ (kg/m3) 2780 2600 2850
Young’s modulus, E (GPa) 50–80 65–95 35–180
uniaxial compressive strength, σc (MPa) 450 700 220
uniaxial tensile strength, σt (MPa) 11–35 30–50 5–40
Tab.1  
material elastic behavior plastic behavior
density, ρ (kg/m3) Young’s modulus, E (GPa) Poisson’s ratio, ν friction angle, φ (°) cohesion tension cut-off
cohesive yield stress (MPa) shear plastic strain tensile stress (MPa) tensile plastic strain
feldspar 2780 50 0.2 60 54 0 11 0
0.01 0.2 0.1 0.03
quartz 2600 60 0.2 60 93 0 30 0
0.01 0.25 0.1 0.04
biotite 2850 35 0.2 60 30 0 5 0
0.01 0.15 0.1 0.02
void 1 1×10?9 0.2
Tab.2  
Fig.2  
Fig.3  
parameter statistical measure
min max average CV (%)
uniaxial compressive strength, σc (MPa) 231.97 260.67 247.96 3.99
Young’s modulus, E (GPa) 53.2 53.4 53.3 0.11
Poisson’s ratio, ν 0.2 0.2 0.2 0.01
Tab.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
1 W X Zhang, X L Fan, T J Wang. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect. Applied Surface Science, 2011, 258( 2): 811– 817
https://doi.org/10.1016/j.apsusc.2011.08.103
2 W Shen, R Yan, E Liu, L Xu. Fatigue growth behavior for surface crack in welding joints under combined compressive and bending stresses. International Journal of Fatigue, 2015, 77 : 50– 63
https://doi.org/10.1016/j.ijfatigue.2015.03.005
3 S G F Cordeiro, E D Leonel. Cohesive crack propagation modelling in wood structures using BEM and the Tangent Operator Technique. Engineering Analysis with Boundary Elements, 2016, 64 : 111– 121
https://doi.org/10.1016/j.enganabound.2015.11.013
4 W Harrer, R Danzer, R Morrell. Influence of surface defects on the biaxial strength of a silicon nitride ceramic—Increase of strength by crack healing. Journal of the European Ceramic Society, 2012, 32( 1): 27– 35
https://doi.org/10.1016/j.jeurceramsoc.2011.07.019
5 Y Lu, L Wang, D Elsworth. Uniaxial strength and failure in sandstone containing a pre-existing 3-D surface flaw. International Journal of Fracture, 2015, 194( 1): 59– 79
https://doi.org/10.1007/s10704-015-0032-3
6 S Bastola, M Cai. Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach. Computers and Geotechnics, 2019, 110 : 28– 43
https://doi.org/10.1016/j.compgeo.2019.02.009
7 A Manouchehrian, M Sharifzadeh, M F Marji, J Gholamnejad. A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Archives of Civil and Mechanical Engineering, 2014, 14( 1): 40– 52
https://doi.org/10.1016/j.acme.2013.05.008
8 C Tang, P Kaiser. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I: Fundamentals. International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 2): 113– 121
https://doi.org/10.1016/S0148-9062(97)00009-0
9 Z Wu, L N Y Wong. Frictional crack initiation and propagation analysis using the numerical manifold method. Computers and Geotechnics, 2012, 39 : 38– 53
https://doi.org/10.1016/j.compgeo.2011.08.011
10 H L Ren, X Y Zhuang, C Anitescu, T Rabczuk. An explicit phase field method for brittle dynamic fracture. Computers & Structures, 2019, 217 : 45– 56
https://doi.org/10.1016/j.compstruc.2019.03.005
11 H Ren, X Zhuang, Y Cai, T Rabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108( 12): 1451– 1476
https://doi.org/10.1002/nme.5257
12 X Zhuang, S Zhou, M Sheng, G Li. On the hydraulic fracturing in naturally-layered porous media using the phase field method. Engineering Geology, 2020, 266 : 105306–
https://doi.org/10.1016/j.enggeo.2019.105306
13 S Zhou, T Rabczuk, X Zhuang. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, 122 : 31– 49
https://doi.org/10.1016/j.advengsoft.2018.03.012
14 S Zhou, X Zhuang, H Zhu, T Rabczuk. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics, 2018, 96 : 174– 192
https://doi.org/10.1016/j.tafmec.2018.04.011
15 F Cruz, D Roehl, E A Jr Vargas. An XFEM implementation in Abaqus to model intersections between fractures in porous rocks. Computers and Geotechnics, 2019, 112 : 135– 146
https://doi.org/10.1016/j.compgeo.2019.04.014
16 Y Jiang, H Luan, D Wang, C Wang, W Han. Failure mechanism and acoustic emission characteristics of rock specimen with edge crack under uniaxial compression. Geotechnical and Geological Engineering, 2019, 37( 3): 2135– 2145
https://doi.org/10.1007/s10706-018-0750-1
17 X Qian, Z Liang, Z Liao, K Wang. Numerical investigation of dynamic fracture in rock specimens containing a pre-existing surface flaw with different dip angles. Engineering Fracture Mechanics, 2020, 223 : 106675–
https://doi.org/10.1016/j.engfracmech.2019.106675
18 H Jiefan, C Ganglin, Z Yonghong, W Ren. An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics, 1990, 175( 1−3): 269– 284
https://doi.org/10.1016/0040-1951(90)90142-U
19 B Shen, O Stephansson, H H Einstein, B Ghahreman. Coalescence of fractures under shear stresses in experiments. Journal of Geophysical Research. Solid Earth, 1995, 100( B4): 5975– 5990
https://doi.org/10.1029/95JB00040
20 A Bobet, H H Einstein. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 7): 863– 888
https://doi.org/10.1016/S0148-9062(98)00005-9
21 B Shen. The mechanism of fracture coalescence in compression—Experimental study and numerical simulation. Engineering Fracture Mechanics, 1995, 51( 1): 73– 85
https://doi.org/10.1016/0013-7944(94)00201-R
22 D Huang, D Gu, C Yang, R Huang, G Fu. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mechanics and Rock Engineering, 2016, 49( 2): 375– 399
https://doi.org/10.1007/s00603-015-0757-3
23 C H Park, A Bobet. Crack coalescence in specimens with open and closed flaws: A comparison. International Journal of Rock Mechanics and Mining Sciences, 2009, 46( 5): 819– 829
https://doi.org/10.1016/j.ijrmms.2009.02.006
24 W Du, X Fu, Q Sheng, J Chen, Y Du, Z Zhang. Study on the failure process of rocks with closed fractures under compressive loading using improved bond-based peridynamics. Engineering Fracture Mechanics, 2020, 240 : 107315–
https://doi.org/10.1016/j.engfracmech.2020.107315
25 H Lee, S Jeon. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 2011, 48( 6): 979– 999
https://doi.org/10.1016/j.ijsolstr.2010.12.001
26 S Q Yang, X R Liu, H W Jing. Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2013, 63 : 82– 92
https://doi.org/10.1016/j.ijrmms.2013.06.008
27 M Sagong, A Bobet. Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2002, 39( 2): 229– 241
https://doi.org/10.1016/S1365-1609(02)00027-8
28 R H C Wong, K T Chau. Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 2): 147– 164
https://doi.org/10.1016/S0148-9062(97)00303-3
29 L N Y Wong, H H Einstein. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2009, 46( 2): 239– 249
https://doi.org/10.1016/j.ijrmms.2008.03.006
30 P Z Pan, S Miao, Q Jiang, Z Wu, C Shao. The influence of infilling conditions on flaw surface relative displacement induced cracking behavior in hard rock. Rock Mechanics and Rock Engineering, 2020, 53( 10): 4449– 4470
https://doi.org/10.1007/s00603-019-02033-x
31 M Alitalesh, M Yazdani, A Fakhimi, M Naeimabadi. Effect of loading direction on interaction of two pre-existing open and closed flaws in a rock-like brittle material. Underground Space, 2020, 5( 3): 242– 257
https://doi.org/10.1016/j.undsp.2019.04.003
32 H Le, S Sun, P H S W Kulatilake, J Wei. Effect of grout on mechanical properties and cracking behavior of rock-like specimens containing a single flaw under uniaxial compression. International Journal of Geomechanics, 2018, 18( 10): 04018129–
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001225
33 S Blair, N Cook. Analysis of compressive fracture in rock using statistical techniques: Part I. A non-linear rule-based model. International Journal of Rock Mechanics and Mining Sciences, 1998, 35( 7): 837– 848
https://doi.org/10.1016/S0148-9062(98)00008-4
34 J Jr Gallagher, M Friedman, J Handin, G Sowers. Experimental studies relating to microfracture in sandstone. Tectonophysics, 1974, 21( 3): 203– 247
https://doi.org/10.1016/0040-1951(74)90053-5
35 C D Martin, N A Chandler. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31( 6): 643– 659
https://doi.org/10.1016/0148-9062(94)90005-1
36 G M Fonseka, S A F Murrell, P Barnes. Scanning electron microscope and acoustic emission studies of crack development in rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22( 5): 273– 289
https://doi.org/10.1016/0148-9062(85)92060-1
37 P Tapponnier, W F Brace. Development of stress-induced microcracks in Westerly Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13( 4): 103– 112
https://doi.org/10.1016/0148-9062(76)91937-9
38 W F Brace, B W Paulding Jr, C Scholz. Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research, 1966, 71( 16): 3939– 3953
39 C Fairhurst, N G W Cook. The phenomenon of rock splitting parallel to the direction compression in the neighbourhood of a surface. In: Proceedings of the First Congress of the International Society of Rock Mechanics. Lisbon: National Civil Engineering Laboratory, 1966
40 V Hajiabdolmajid, P Kaiser, C Martin. Modelling brittle failure of rock. International Journal of Rock Mechanics and Mining Sciences, 2002, 39( 6): 731– 741
https://doi.org/10.1016/S1365-1609(02)00051-5
41 A Manouchehrian, M Cai. Influence of material heterogeneity on failure intensity in unstable rock failure. Computers and Geotechnics, 2016, 71 : 237– 246
https://doi.org/10.1016/j.compgeo.2015.10.004
42 M Smith. ABAQUS/Standard User’s Manual Version 6.9. 2009
43 G Li, W Wang, Z Jing, L Zuo, F Wang, Z Wei. Mechanism and numerical analysis of cutting rock and soil by TBM cutting tools. Tunnelling and Underground Space Technology, 2018, 81 : 428– 437
https://doi.org/10.1016/j.tust.2018.08.015
44 A Manouchehrian, M Cai. Numerical modeling of rockburst near fault zones in deep tunnels. Tunnelling and Underground Space Technology, 2018, 80 : 164– 180
https://doi.org/10.1016/j.tust.2018.06.015
45 S Helwany. Applied Soil Mechanics with ABAQUS Applications. Hoboken: John Wiley & Sons, 2007
46 G Liu, M Cai, M Huang. Mechanical properties of brittle rock governed by micro-geometric heterogeneity. Computers and Geotechnics, 2018, 104 : 358– 372
https://doi.org/10.1016/j.compgeo.2017.11.013
47 G Puri. Python Scripts for Abaqus: Learn by Example. 2011
48 J D Bass. Elasticity of minerals, glasses, and melts. Mineral Physics & Crystallography: A handbook of physical constants, 1995, 2 : 45– 63
49 G Simmons, H Wang. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook. Cambridge, Mass: M. I. T. Press, 1971
50 H Hofmann, T Babadagli, J S Yoon, A Zang, G Zimmermann. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites. Engineering Fracture Mechanics, 2015, 147 : 261– 275
https://doi.org/10.1016/j.engfracmech.2015.09.008
51 J Zhou, H Lan, L Zhang, D Yang, J Song, S Wang. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite. Engineering Geology, 2019, 251 : 100– 114
https://doi.org/10.1016/j.enggeo.2019.02.005
52 E Hoek. Strength of jointed rock masses. Geotechnique, 1983, 33( 3): 187– 223
https://doi.org/10.1680/geot.1983.33.3.187
53 Barton N R. TBM Tunnelling in Jointed and Faulted Rock. Boca Raton: CRC Press, 2000
54 M He, W Nie, Z Zhao, W Guo. Experimental investigation of bedding plane orientation on the rockburst behavior of sandstone. Rock Mechanics and Rock Engineering, 2012, 45( 3): 311– 326
https://doi.org/10.1007/s00603-011-0213-y
55 S Lee, G Ravichandran. Crack initiation in brittle solids under multiaxial compression. Engineering Fracture Mechanics, 2003, 70( 13): 1645– 1658
https://doi.org/10.1016/S0013-7944(02)00203-5
56 S Q Yang, H W Jing. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. International Journal of Fracture, 2011, 168( 2): 227– 250
https://doi.org/10.1007/s10704-010-9576-4
57 B J Carter, E Z Lajtai, A Petukhov. Primary and remote fracture around underground cavities. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15( 1): 21– 40
https://doi.org/10.1002/nag.1610150103
58 H Wu, P H S W Kulatilake, G Zhao, W Liang. Stress distribution and fracture evolution around a trapezoidal cavity in sandstone loaded in compression. Theoretical and Applied Fracture Mechanics, 2019, 104 : 102348–
https://doi.org/10.1016/j.tafmec.2019.102348
59 H Wu, P H S W Kulatilake, G Zhao, W Liang, E Wang. A comprehensive study of fracture evolution of brittle rock containing an inverted U-shaped cavity under uniaxial compression. Computers and Geotechnics, 2019, 116 : 103219–
https://doi.org/10.1016/j.compgeo.2019.103219
60 X Fan, R Chen, H Lin, H Lai, C Zhang, Q Zhao. Cracking and failure in rock specimen containing combined flaw and hole under uniaxial compression. Advances in Civil Engineering, 2018, 2018 : 9818250–
https://doi.org/10.1155/2018/9818250
61 Brady B H, Brown E T. Rock Mechanics: For Underground Mining. Berlin: Springer Science & Business Media, 2013
62 C D Martin. Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal, 1997, 34( 5): 698– 725
https://doi.org/10.1139/t97-030
63 R Durrheim. Mitigating the risk of rockbursts in the deep hard rock mines of South Africa: 100 years of research. Extracting the Science: A Century of Mining Research, 2010, 156– 171
64 C Zhang, X T Feng, H Zhou, S Qiu, W Wu. Case histories of four extremely intense rockbursts in deep tunnels. Rock Mechanics and Rock Engineering, 2012, 45( 3): 275– 288
https://doi.org/10.1007/s00603-011-0218-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed