Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (2): 175-190   https://doi.org/10.1007/s11709-021-0791-z
  本期目录
Sensitivity analysis of the deterioration of concrete strength in marine environment to multiple corrosive ions
Jinwei YAO1,2, Jiankang CHEN2()
1. Zhejiang Business Technology Institute, Ningbo 315012, China
2. Key Laboratory of Impact and Safety Engineering, Ministry of Education, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
 全文: PDF(9171 KB)   HTML
Abstract

The corrosion degradation behavior of concrete materials plays a crucial role in the change of its mechanical properties under multi-ion interaction in the marine environment. In this study, the variation in the macro-physical and mechanical properties of concrete with corrosion time is investigated, and the source of micro-corrosion products under different salt solutions in seawater are analyzed. Regardless of the continuous hydration effect of concrete, the damage effects of various corrosive ions (Cl, SO42, and Mg2+, etc.) on the tensile and compressive strength of concrete are discussed based on measurement in different salt solutions. The sensitivity analysis method for concrete strength is used to quantitatively analyze the sensitivity of concrete strength to the effects of each ion in a multi-salt solution without considering the influence of continued hydration. The quantitative results indicate that the addition of Cl can weaken the corrosion effect of SO42 by about 20%, while the addition of Mg2+ or Mg2+ and Cl can strengthen it by 10%–20% during a 600-d corrosion process.

Key wordssensitivity analysis    concrete strength    corrosion deterioration    multi-ion interaction    marine environment
收稿日期: 2021-08-07      出版日期: 2022-04-20
Corresponding Author(s): Jiankang CHEN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(2): 175-190.
Jinwei YAO, Jiankang CHEN. Sensitivity analysis of the deterioration of concrete strength in marine environment to multiple corrosive ions. Front. Struct. Civ. Eng., 2022, 16(2): 175-190.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-021-0791-z
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I2/175
Al2O3 CaO Fe2O3 K2O MgO Na2O SO3 SiO2 TiO2 loss
5.55 67.18 4.19 0.91 1.71 0.32 3.18 15.92 0.59 0.45
Tab.1  
Fig.1  
side length of square hole (mm) cumulative sieve residue (%)
0.08 99 ± 1
0.16 87 ± 5
0.50 67 ± 5
1.00 33 ± 5
1.60 7 ± 5
2.00 0
Tab.2  
side length of square hole (mm) sieve weight (g) cumulative weight percentage (%) 5–16 mm continuous gradation cumulative sieve residue (%)
2.36 45.3 97.00 95–100
4.75 460.5 92.47 85–100
9.50 425.7 46.42 30–60
16.0 38.5 3.85 0–10
19.0 0 0 0
Tab.3  
type water-cement ratio (w/c) cement water sand gravel
0.33 22 7 21 50
0.50 14 7 29 50
Tab.4  
symbol NaCl Na2SO4 MgSO4 water
Q 0 0 0 100
L 10 0 0 90
S 0 5 0 95
M 0 0 5 95
SL 10 5 0 85
ML 10 0 5 85
Tab.5  
Fig.2  
Fig.3  
Fig.4  
ηc normalized strength value
5% MgSO4 + 10% NaCl 5% Na2SO4 + 10% NaCl 5% MgSO4 5% Na2SO4 10% NaCl water
B2 –2.821 × 10–6 –1.836 × 10–6 –2.356 × 10–6 –2.588 × 10–6 –1.649 × 10–6 –1.360 × 10–6
B1 1.331 × 10–3 1.436 × 10–3 1.460 × 10–3 1.581 × 10–3 1.3348 × 10–3 1.167 × 10–3
R2 0.862 0.968 0.788 0.989 0.952 0.938
Tab.6  
ηc normalized strength value
5% MgSO4 + 10% NaCl 5% Na2SO4 + 10% NaCl 5% MgSO4 5% Na2SO4 10% NaCl water
B2 –2.054 × 10–6 –2.560 × 10–6 –2.234 × 10–6 –3.066 × 10–6 –1.901 × 10–6 –0.981 × 10–6
B1 1.113 × 10–3 1.932 × 10–3 1.370 × 10–3 1.862 × 10–3 1.532 × 10–3 0.925 × 10–3
R2 0.848 0.977 0.974 0.887 0.971 0.978
Tab.7  
ηt normalized strength value
5% MgSO4 + 10% NaCl 5% Na2SO4 + 10% NaCl 5% MgSO4 5% Na2SO4 10% NaCl water
B2 –4.041 × 10–6 –3.869 × 10–6 –5.254 × 10–6 –5.083 × 10–6 –2.794 × 10–6 –2.764 × 10–6
B1 2.590 × 10–3 2.922 × 10–3 3.286 × 10–3 3.340 × 10–3 2.130 × 10–3 2.136 × 10–3
R2 0.937 0.965 0.911 0.658 0.846 0.840
Tab.8  
ηt normalized strength value
5% MgSO4 + 10% NaCl 5% Na2SO4 + 10% NaCl 5% MgSO4 5% Na2SO4 10% NaCl water
B2 –3.017 × 10–6 –4.482 × 10–6 –2.400 × 10–6 –4.486 × 10–6 –1.778 × 10–6 –1.628 × 10–6
B1 1.719 × 10–3 2.905 × 10–3 1.435 × 10–3 2.546 × 10–3 1.443 × 10–3 1.324 × 10–3
R2 0.833 0.933 0.973 0.938 0.836 0.891
Tab.9  
Fig.5  
w/c ML SL M S L
0.50 110 560 290 335 600
0.33 175 >600 355 450 >600
Tab.10  
w/c ML SL M S L
0.50 110 205 220 235
0.33 130 350 45 270
Tab.11  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 O Poupard, V L’Hostis, S Catinaud, I Petre-Lazar. Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cement and Concrete Research, 2006, 36( 3): 504– 520
https://doi.org/10.1016/j.cemconres.2005.11.004
2 B Da, H F Yu, H Y Ma, Y S Tan, R J Mi, X M Dou. Chloride diffusion study of coral concrete in a marine environment. Construction & Building Materials, 2016, 123 : 47– 58
https://doi.org/10.1016/j.conbuildmat.2016.06.135
3 S Cang, Y Z Yang, J K Chen. Damage layer evolution of a breakwater under seawater attack: testing and modeling. Acta Mechanica Solida Sinica, 2020, 33( 1): 1– 13
4 L Lei, Q Wang, S Xu, N Wang, X Zheng. Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties. Construction & Building Materials, 2020, 251 : 118946–
https://doi.org/10.1016/j.conbuildmat.2020.118946
5 Z Y Wu, H F Yu, H Y Ma, J H Zhang, B Da, H W Zhu. Rebar corrosion in coral aggregate concrete: Determination of chloride threshold by LPR. Corrosion Science, 2020, 163 : 108238–
https://doi.org/10.1016/j.corsci.2019.108238
6 X Y Wang. Impacts of climate change on optimal mixture design of blended concrete considering carbonation and chloride ingress. Frontiers of Structural and Civil Engineering, 2020, 14( 2): 473– 486
https://doi.org/10.1007/s11709-020-0608-5
7 C Qiao, P Suraneni, J Weiss. Damage in cement pastes exposed to NaCl solutions. Construction & Building Materials, 2018, 171 : 120– 127
https://doi.org/10.1016/j.conbuildmat.2018.03.123
8 H Xu, J K Chen. Coupling effect of corrosion damage on chloride ions diffusion in cement based materials. Construction & Building Materials, 2020, 243 : 118225–
https://doi.org/10.1016/j.conbuildmat.2020.118225
9 L Jiang, D T Niu. Study of deterioration of concrete exposed to different types of sulfate solutions under drying−wetting cycles. Construction & Building Materials, 2016, 117 : 88– 98
https://doi.org/10.1016/j.conbuildmat.2016.04.094
10 M H Zhang, J K Chen, Y F Lv, D J Wang, J Ye. Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Construction & Building Materials, 2013, 39 : 26– 32
https://doi.org/10.1016/j.conbuildmat.2012.05.003
11 K Sotiriadis, E Nikolopoulou, S Tsivilis, A Pavlou, E Chaniotakis, R N Swamy. The effect of chlorides on the thaumasite form of sulfate attack of limestone cement concrete containing mineral admixtures at low temperature. Construction & Building Materials, 2013, 43 : 156– 164
https://doi.org/10.1016/j.conbuildmat.2013.02.014
12 Y Chen, J Gao, L Tang, X Li. Resistance of concrete against combined attack of chloride and sulfate under drying–wetting cycles. Construction & Building Materials, 2016, 106 : 650– 658
https://doi.org/10.1016/j.conbuildmat.2015.12.151
13 R R Yin, C C Zhang, Q Wu, B C Li, H Xie. Damage on lining concrete in highway tunnels under combined sulfate and chloride attack. Frontiers of Structural and Civil Engineering, 2018, 12( 3): 331– 340
https://doi.org/10.1007/s11709-017-0421-y
14 M Maes, N de Belie. Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cement and Concrete Composites, 2014, 53 : 59– 72
https://doi.org/10.1016/j.cemconcomp.2014.06.013
15 X B Zuo, W Sun, C Yu. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack. Construction & Building Materials, 2012, 36 : 404– 410
https://doi.org/10.1016/j.conbuildmat.2012.05.020
16 L X Mao, Z Hu, J Xia, G L Feng, I Azim, J Yang, Q F Liu. Multi-phase modelling of electrochemical rehabilitation for ASR and chloride affected concrete composites. Composite Structures, 2019, 207 : 176– 189
https://doi.org/10.1016/j.compstruct.2018.09.063
17 W Q Jiang, X H Shen, S X Hong, Z Y Wu, Q F Liu. Binding capacity and diffusivity of concrete subjected to freeze-thaw and chloride attack: a numerical study. Ocean Engineering, 2019, 186 : 106093–
https://doi.org/10.1016/j.oceaneng.2019.05.075
18 L J Li, Q F Liu, L P Tang, Z Hu, Y Wen, P Zhang. Chloride penetration in freeze-thaw induced cracking concrete: A numerical study. Construction & Building Materials, 2021, 302 : 124291–
https://doi.org/10.1016/j.conbuildmat.2021.124291
19 Q F Liu, M F Iqbal, J Yang, X Y Lu, P Zhang, M Rauf. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Construction & Building Materials, 2021, 268 : 121082–
https://doi.org/10.1016/j.conbuildmat.2020.121082
20 T Ikumi, I Segura. Numerical assessment of external sulfate attack in concrete structures: A review. Cement and Concrete Research, 2019, 121 : 91– 105
https://doi.org/10.1016/j.cemconres.2019.04.010
21 C L Zhang, W K Chen, S Mu, B Šavija, Q F Liu. Numerical investigation of external sulfate attack and its effect on chloride binding and diffusion in concrete. Construction & Building Materials, 2021, 285 : 122806–
https://doi.org/10.1016/j.conbuildmat.2021.122806
22 X H Shen, Q F Liu, Z Hu, W Q Jiang, X S Lin, D H Hou, P Hao. Combine ingress of chloride and carbonation in marine-exposed concrete under unsaturated environment: a numerical study. Ocean Engineering, 2019, 189 : 106350–
https://doi.org/10.1016/j.oceaneng.2019.106350
23 Weerdt K de, D Orsáková, M R Geiker. The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cement and Concrete Research, 2014, 65 : 30– 40
https://doi.org/10.1016/j.cemconres.2014.07.007
24 N Xie, Y Dang, X Shi. New insights into how MgCl2 deteriorates Portland cement concrete. Cement and Concrete Research, 2019, 120 : 244– 255
https://doi.org/10.1016/j.cemconres.2019.03.026
25 N Damrongwiriyanupap, L Y Li, Y P Xi. Coupled diffusion of chloride and other ions in saturated concrete. Frontiers of Structural and Civil Engineering, 2011, 5( 3): 267– 277
26 E E Hekal, E Kishar, H Mostafa. Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cement and Concrete Research, 2002, 32( 9): 1421– 1427
https://doi.org/10.1016/S0008-8846(02)00801-3
27 K de Weerdt, H Justnes. The effect of sea water on the phase assemblage of hydrated cement paste. Cement and Concrete Composites, 2015, 55 : 215– 222
https://doi.org/10.1016/j.cemconcomp.2014.09.006
28 M Maes, F Mittermayr, N de Belie. The influence of sodium and magnesium sulphate on the penetration of chlorides in mortar. Materials and Structures, 2017, 50( 2): 1– 14
https://doi.org/10.1617/s11527-017-1024-8
29 O S B Al-Amoudi, M Maslehuddin, Y A B Abdul-Al. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments. Construction & Building Materials, 1995, 9( 1): 25– 33
https://doi.org/10.1016/0950-0618(95)92857-D
30 T Chiker, S Aggoun, H Houari, R Siddique. Sodium sulfate and alternative combined sulfate/chloride action on ordinary and self-consolidating PLC-based concretes. Construction & Building Materials, 2016, 106 : 342– 348
https://doi.org/10.1016/j.conbuildmat.2015.12.123
31 F Chen, J Gao, B Qi, D Shen, L Li. Degradation progress of concrete subject to combined sulfate-chloride attack under drying−wetting cycles and flexural loading. Construction & Building Materials, 2017, 151 : 164– 171
https://doi.org/10.1016/j.conbuildmat.2017.06.074
32 H F Yu, Y S Tan, L M Yang. Microstructural evolution of concrete under the attack of chemical, salt crystallization, and bending stress. Journal of Materials in Civil Engineering, 2017, 29( 7): 04017041–
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001869
33 M Maes, N de Belie. Influence of chlorides on magnesium sulphate attack for mortars with Portland cement and slag based binders. Construction & Building Materials, 2017, 155 : 630– 642
https://doi.org/10.1016/j.conbuildmat.2017.07.201
34 J Geng, D Easterbrook, L Y Li, L W Mo. The stability of bound chlorides in cement paste with sulfate attack. Cement and Concrete Research, 2015, 68 : 211– 222
https://doi.org/10.1016/j.cemconres.2014.11.010
35 K Sotiriadis, E Nikolopoulou, S Tsivilis. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature. Cement and Concrete Composites, 2012, 34( 8): 903– 910
https://doi.org/10.1016/j.cemconcomp.2012.05.006
36 P W Brown, S Badger. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cement and Concrete Research, 2000, 30( 10): 1535– 1542
https://doi.org/10.1016/S0008-8846(00)00386-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed