Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (6): 718-728   https://doi.org/10.1007/s11709-022-0815-3
  本期目录
Study of the mechanics of progressive collapse of FPB isolated beam-pier substructures
Jingcai ZHANG1,2, Yong DING1,2, Xinchun GUAN1,2()
1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(2950 KB)   HTML
Abstract

The horizontal stiffness of the isolated layer is reduced substantially by a friction pendulum bearing (FPB) toprotectthe structure from potential damages caused by earthquakes. However, horizontal stiffness is essential to progressive collapse resistance of structures. This paper presents a simplified model to assess the progressive collapse response of beam-pier substructure isolated by FPB. Progressive collapse resistance by flexural action of the beam and additional resistance owing to the horizontal restraining force was achieved. The influences of the equivalent radius and friction coefficient of the FPB, the applied axial force on the FPB, and span-depth ratio of the beam on the additional resistance were investigated. Simulations were conducted to verify the proposed model. The results show that progressive collapse resistance provided by horizontal restraining can be reduced as large as 46% and 88% during compressive arching action (CAA) and catenary action (CA), respectively. The equivalent radius of the FPB shows limited effect on the progressive collapse response of FPB isolated structures, but friction coefficient and applied axial force, as well as depth ratio of the beam, show significant influences on the additional progressive collapse resistance capacity. Finite element method (FEM) results are in good agreement with the result obtained by the proposed method.

Key wordsfriction pendulum bearing    progressive collapse    horizontal stiffness    compressive arching action    catenary action
收稿日期: 2021-06-21      出版日期: 2022-10-20
Corresponding Author(s): Xinchun GUAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(6): 718-728.
Jingcai ZHANG, Yong DING, Xinchun GUAN. Study of the mechanics of progressive collapse of FPB isolated beam-pier substructures. Front. Struct. Civ. Eng., 2022, 16(6): 718-728.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0815-3
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I6/718
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
parameter FEM (kN) proposed model (kN) | FE Mp rop os edm ode l|F EM
PCAA 21.0 22.5 7.14%
Pmax, CAA 30.7 28.5 7.16%
Pmin, CAA 28.1 29.4 2.49%
Pmax, CA 32.2 34.2 6.21%
Tab.1  
Fig.14  
1 J M Adam, F Parisi, J Sagasetac, X Z Lu. Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 2018, 173 : 122– 149
https://doi.org/10.1016/j.engstruct.2018.06.082
2 P M Stylianidis, D A Nethercot, B A Izzuddin, A Y Elghazouli. Study of the mechanics of progressive collapse with simplified beam models. Engineering Structures, 2016, 117 : 287– 304
https://doi.org/10.1016/j.engstruct.2016.02.056
3 X Z Lu, K Q Lin, C Li, Y Li. New analytical calculation models for compressive arch action in reinforced concrete structures. Engineering Structures, 2018, 168 : 721– 735
https://doi.org/10.1016/j.engstruct.2018.04.097
4 K Qian, B Li, J Ma. Load-carrying mechanism to resist progressive collapse of RC buildings. Journal of Structural Engineering, 2015, 141( 2): 04014107
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001046
5 K Qian, B Li. Strengthening and retrofitting precast concrete buildings to mitigate progressive collapse using externally bonded GFRP strips. Journal of Composites for Construction, 2019, 23( 3): 04019018
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000943
6 Y Li, X Z Lu, H Guan, L P Ye. Progressive collapse resistance demand of reinforced concrete frames under catenary mechanism. ACI Structural Journal, 2014, 111( 5): 1225– 1234
https://doi.org/10.14359/51687029
7 K Qian, Y H Weng, B Li. Improving behavior of reinforced concrete frames to resist progressive collapse through steel bracings. Journal of Structural Engineering, 2019, 145( 2): 04018248
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002263
8 X Z Lu, K Q Lin, Y Li, H Guan, P Ren, Y Zhou. Experimental investigation of RC beam-slab substructures against progressive collapse subject to an edge-column-removal scenario. Engineering Structures, 2017, 149 : 91– 103
https://doi.org/10.1016/j.engstruct.2016.07.039
9 X Lu, X Lu, H Guan, L Ye. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthquake Engineering & Structural Dynamics, 2013, 42( 5): 705– 723
https://doi.org/10.1002/eqe.2240
10 K Qian, B Li. Analytical evaluation of the vulnerability of RC frames for progressive collapse caused by the loss of a corner column. Journal of Performance of Constructed Facilities, 2015, 29( 1): 04014025
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000493
11 Y Xiao, S Kunnath, F W Li, Y B Zhao, H S Lew, Y Bao. Collapse test of three-story half-scale reinforced concrete frame building. ACI Structural Journal, 2015, 112( 4): 429– 438
https://doi.org/10.14359/51687746
12 S Marjanishvili, E Agnew. Comparison of various procedures for progressive collapse analysis. Journal of Performance of Constructed Facilities, 2006, 20( 4): 365– 374
https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365
13 S Mehrdad, B Marlon, S Serkan. Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure. ACI Structural Journal, 2007, 104( 6): 731– 739
14 H S Setareh, J Mashhadi. Assessment of dynamic increase factor for progressive collapse analysis of RC structures. Engineering Failure Analysis, 2017, 84 : 300– 310
15 M Liu. A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse. Engineering Structures, 2013, 48 : 666– 673
https://doi.org/10.1016/j.engstruct.2012.12.011
16 M H Tsai, B H Lin. Dynamic amplification factor for progressive collapse resistance analysis of an RC building. Structural Design of Tall and Special Buildings, 2009, 18( 5): 539– 557
https://doi.org/10.1002/tal.453
17 Y Li, X Z Lu, H Guan, L P Ye. An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures. Engineering Structures, 2011, 33( 10): 2931– 2942
https://doi.org/10.1016/j.engstruct.2011.06.017
18 UFC-4-023-03. Design of Structures to Resist Progressive Collapse. Washington D.C.: Department of Defense (DoD), 2009
19 Service Administration (GSA) General. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects. Washington D.C.: The US General Service Administration, 2003
20 Z Tan, W Zhong, B Meng, Y Zheng, S Duan. Effect of various boundary constraints on the collapse behavior of multi-story composite frames. Journal of Building Engineering, 2022, 52 : 104412
21 W G Corley M A Sozen C H Thornton P F Mlakar. The Oklahoma City Bombing: Improving Building Performance Through Multi-hazard Mitigation. Washington, D.C.: Federal Emergency Management Agency, 1996
22 M Z Diao, Y Li, H Guan, X Z Lu, B P Gilbert. Influence of horizontal restraints on the behavior of vertical disproportionate collapse of RC moment frames. Engineering Failure Analysis, 2020, 109 : 104324
https://doi.org/10.1016/j.engfailanal.2019.104324
23 S B Kang, K H Tan, H Y Liu, X H Zhou, B Yang. Effect of boundary conditions on the behaviour of composite frames against progressive collapse. Journal of Constructional Steel Research, 2017, 138 : 150– 167
https://doi.org/10.1016/j.jcsr.2017.07.005
24 N S Lim, K H Tan, C K Lee. Effects of rotational capacity and horizontal restraint on development of catenary action in 2-d RC frames. Engineering Structures, 2017, 153 : 613– 627
https://doi.org/10.1016/j.engstruct.2017.09.059
25 A T Pham, N S Lim, K H Tan. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures, 2017, 150 : 520– 536
https://doi.org/10.1016/j.engstruct.2017.07.060
26 W Zhong, B Meng, J Hao. Performance of different stiffness connections against progressive collapse. Journal of Constructional Steel Research, 2017, 135 : 162– 175
https://doi.org/10.1016/j.jcsr.2017.04.021
27 Y Du X Zhu X Z Lu X Song Z Tan. Analysis on progressive collapse resistance of long complicated isolated structures. China Civil Engineering Journal, 2012, S1: 90− 95 (in Chinese)
28 Y Du, C Shi. Progressive collapse performance of isolated structures subjected to multi-direction coupled dynamic excitation. Engineering Mechanics, 2019, 36( 6): 248– 256
29 Y Du, H Duan, T Xu. Vertical progressive collapse mechanism and influencing factors of base-isolated structures. Journal of Vibration and Shock, 2018, 37( 5): 257– 260
30 M Khatibinia, H Gholami, R Kamgar. Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. International Journal of Dynamics and Control, 2018, 6( 3): 1094– 1104
https://doi.org/10.1007/s40435-017-0386-7
31 R Kamgar, P Samea, M Khatibinia. Optimizing parameters of tuned mass damper subjected to critical earthquake. Structural Design of Tall and Special Buildings, 2018, 27( 7): e1460
https://doi.org/10.1002/tal.1460
32 R Kamgar, M Khatibinia, M Khatibinia. Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. International Journal of Optimization in Civil Engineering, 2019, 9( 2): 213– 232
33 M Dadkhah, R Kamgar, H Heidarzadeh, A Jakubczyk-Gałczyńska, R Jankowski. Improvement of performance level of steel moment-resisting frames using tuned mass damper system. Applied Sciences (Basel, Switzerland), 2020, 10( 10): 3403
https://doi.org/10.3390/app10103403
34 Q Xue, J Zhang, J He, C Zhang, G Zhou. Seismic control performance for pounding tuned massed damper based on viscoelastic pounding force analytical method. Journal of Sound and Vibration, 2017, 411 : 362– 377
https://doi.org/10.1016/j.jsv.2017.08.035
35 R Kamgar, F Gholami, H R Zarif Sanayei, H Heidarzadeh. Modified tuned liquid dampers for seismic protection of buildings considering soil–structure interaction effects. Civil Engineering (Shiraz), 2020, 44( 1): 339– 354
https://doi.org/10.1007/s40996-019-00302-x
36 X Guan, J Zhang, H Li, J O U J Ou. Semi-active control for benchmark building using innovative TMD with MRE isolators. International Journal of Structural Stability and Dynamics, 2020, 20( 6): 2040009
https://doi.org/10.1142/S021945542040009X
37 F Fitzgerald, S Sarkar, A Staino. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs). Journal of Sound and Vibration, 2018, 419 : 103– 122
https://doi.org/10.1016/j.jsv.2017.12.026
38 A Shariati, R Kamgar, R Rahgozar. Optimum layout of nonlinear fluid viscous damper for improvement the responses of tall buildings. International Journal of Optimization In Civil Engineering, 2020, 10( 3): 411– 431
39 M Salimi, R Kamgar, H Heidarzadeh. An evaluation of the advantages of friction TMD over conventional TMD. Innovative Infrastructure Solutions, 2021, 6( 2): 1– 12
https://doi.org/10.1007/s41062-021-00473-5
40 R Kamgar, H Heidarzadeh, M Samani. Evaluation of buckling load and dynamic performance of steel shear wall retrofitted with strips made of shape memory alloy. Scientia Iranica, 2020, 1( 1): 1– 27
41 R Kamgar, Y A Dolatabad, M R Samani. Seismic optimization of steel shear wall using shape memory alloy. Iran University of Science & Technology, 2019, 9( 4): 671– 687
42 M Dadkhah, R Kamgar, H Heidarzadeh. Improving the nonlinear seismic performance of steel moment-resisting frames with minimizing the ductility damage index. SN Applied Sciences, 2021, 3( 1): 1– 14
https://doi.org/10.1007/s42452-021-04141-2
43 R Tavakoli, R Kamgar, R Rahgozar. Seismic performance of outrigger braced system based on finite element and component-mode synthesis methods. Civil Engineering (Shiraz), 2020, 44( 4): 1125– 1133
https://doi.org/10.1007/s40996-019-00299-3
44 R Kamgar, P Rahgozar. Optimum location for the belt truss system for minimum roof displacement of steel buildings subjected to critical excitation. Steel and Composite Structures, 2020, 37( 4): 463– 479
45 R Kamgar, S Shojaee, R Rahgozar. Rehabilitation of tall buildings by active control system subjected to critical seismic excitation. Asian Journal of Civil Engineering, 2015, 16( 6): 819– 833
46 R Kamgar, R Mohammad. Numerical study for evaluating the effect of length-to-height ratio on the behavior of concrete frame retrofitted with steel infill plates. Practice Periodical on Structural Design and Construction, 2022, 27( 1): 04021062
47 R Tavakoli, R Kamgar, R Rahgozar. Optimal location of energy dissipation outrigger in high-rise building considering nonlinear soil-structure interaction effects. Periodica Polytechnica Civil Engineering, 2020, 64( 3): 887– 903
https://doi.org/10.3311/PPci.14673
48 R Kamgar, R Tavakoli, P Rahgozar, R Jankowski. Application of discrete wavelet transform in seismic nonlinear analysis of soil-structure interaction problems. Earthquake Spectra, 2021, 37( 3): 1980– 2012
https://doi.org/10.1177/8755293020988027
49 V A Zayas, S S Low, S A Mahin. A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 1990, 6( 2): 317– 333
https://doi.org/10.1193/1.1585573
50 Y Li, X Z Lu, H Guan, L P Ye. An energy-based assessment on dynamic amplification factor for linear static analysis in progressive collapse design of ductile RC frame structures. Advances in Structural Engineering, 2014, 17( 8): 1217– 1225
https://doi.org/10.1260/1369-4332.17.8.1217
51 H Jian, Y Zheng. Simplified models of progressive collapse response and progressive collapse-resisting capacity curve of RC beam-column substructures. Journal of Performance of Constructed Facilities, 2014, 28( 4): 04014008
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000492
52 F J Xu. Studies on displacement-based seismic design methodology of reinforced concrete frame-core wall structures. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2006 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed