Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (6): 667-684   https://doi.org/10.1007/s11709-022-0822-4
  本期目录
A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models
Nang Duc BUI1, Hieu Chi PHAN2(), Tiep Duc PHAM1, Ashutosh Sutra DHAR2
1. Institute of Techniques for Special Engineering, Le Quy Don Technical University, Hanoi 100000, Vietnam
2. Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
 全文: PDF(9698 KB)   HTML
Abstract

The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a system containing three trained ML models is proposed to first predict the stability status (random forest classification, RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models, RANN1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process. Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are 1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as high as 0.9521 for RANN1, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also provided to evaluate the relative insight influence of inputs to output.

Key wordsfinite element analysis    cantilever sheet wall    machine learning    artificial neural network    random forest
收稿日期: 2021-08-15      出版日期: 2022-10-20
Corresponding Author(s): Hieu Chi PHAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(6): 667-684.
Nang Duc BUI, Hieu Chi PHAN, Tiep Duc PHAM, Ashutosh Sutra DHAR. A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models. Front. Struct. Civ. Eng., 2022, 16(6): 667-684.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0822-4
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I6/667
Fig.1  
Fig.2  
Fig.3  
No. variable unit validating cases (from Ref. [60]) control case (for parametric study in Subsection 3.4)
1 L m 10 12
2 EI kN·m2/m 6540.7 44982
3 Hw m 0 2
4 H m 3.05; 4.05; 5.05; 5.53; 5.83 4
5 q kN/m2 0 5
6 B m 0 5
7 γunsat kN/m3 16 18.0
8 γsat kN/m3 19.85 19.0
9 Eoed kN/m2 10000 9958
10 c kN/m2 0 1
11 phi ° 39.4 27
Tab.1  
Fig.4  
Fig.5  
Fig.6  
No. L (m) EI (kN·m2/m) Hw (m) H (m) q (kN/m2) B (m) γunsat (kN/m3) γsat (kN/m3) Eoed (kN/m2) c (kN/m2) phi (° ) stable Δ (mm) not failure?
1 8 44982 40 5 0 0 18 19 23000 41 15 1 33.61 1
2 9 44982 40 5 0 0 18 19 23000 41 15 1 30.12 1
3 10 44982 40 5 0 0 18 19 23000 41 15 1 28.69 1
4 12 44982 40 5 0 0 18 19 23000 41 15 1 28.14 1
5 16 44982 40 5 0 0 18 19 23000 41 15 1 27.97 1
6 8 44982 40 5 0 0 19 20 9958 1 27 0 0*
7 9 44982 40 5 0 0 19 20 9958 1 27 0 0*
8 10 44982 40 5 0 0 19 20 9958 1 27 1 211.68 0*
9 12 44982 40 5 0 0 19 20 9958 1 27 1 164.33 1
10 16 44982 40 5 0 0 19 20 9958 1 27 1 155.18 1
198 10 44982 4 5 10 10 19 19.5 12000 32 22 1 40.67 1
199 12 44982 4 5 10 10 19 19.5 12000 32 22 1 39.1 1
200 16 44982 4 5 10 10 19 19.5 12000 32 22 1 39.14 1
Tab.2  
sample # 1 2 199 200
x (m) y(x) (m) x (m) y(x) (m) x (m) y(x) (m) x (m) y(x) (m)
1 0.0000 0.0082 0.0000 0.0061 0.0000 0.0140 0.0000 0.0134
2 0.2951 0.0113 0.2951 0.0092 0.2951 0.0232 0.2951 0.0234
3 0.2951 0.0113 0.2951 0.0092 0.2951 0.0232 0.2951 0.0234
4 0.6264 0.0123 0.6264 0.0104 0.6264 0.0251 0.6264 0.0254
5 0.6264 0.0123 0.6264 0.0104 0.6264 0.0251 0.6264 0.0254
53 55.2219 0.0009 55.2219 0.0009 55.2219 0.0019 55.2219 0.0020
54 57.6109 0.0009 57.6109 0.0009 57.6109 0.0019 57.6109 0.0019
55 60.0000 0.0009 60.0000 0.0009 60.0000 0.0019 60.0000 0.0019
Tab.3  
No. variable unit count min max
1 L (m) 200 8 16
2 EI (kN·m2/m) 200 44982 110250
3 Hw (m) 200 1 40
4 H (m) 200 2.5 5
5 q (kN/m2) 200 0 15
6 B (m) 200 0 15
7 γunsat (kN/m3) 200 17 19
8 γsat (kN/m3) 200 17.6 20
9 Eoed (kN/m2) 200 5479 78000
10 c (kN/m2) 200 1 41
11 φ ° 200 15 34
Tab.4  
Fig.7  
No. model data ID predicted variable unit valid count min max samples for training samples for testing samples for graphical evaluation
1 RFC data1 Statusa) 200 –1 1 160 40
2 RANN1 data2 Δb) mm 135 8.2 200 108 27
3 RANN2 data3 y(x)c) mm 135 × 31 = 4185d) –13.1 854.7 104 × 31 = 3224 26 × 31 = 806 5e) × 31 = 155
Tab.5  
variable L EI Hw H q B γunsat γsat Eoed c φ x
stable 0.3674 –0.0642 0.1327 –0.0832 0.1362 0.1184 –0.0698 –0.1439 0.4293 0.4100 –0.0055
Δ 0.3235 –0.0447 0.0012 0.1555 –0.1327 –0.1248 0.0838 0.1510 –0.4126 –0.4753 0.0798
y(x) 0.0614 –0.0077 –0.0771 -0.0374 0.2938 0.2575 –0.2399 –0.2714 –0.3055 –0.3830 0.3683 –0.3926
Tab.6  
Fig.8  
Fig.9  
layer number of nodes trainable weights
input layer 12 + 1 (bias)
hidden layer 1 64 + 1 (bias) (12+1) × 64 = 832
hidden layer 2 512 + 1 (bias) (64+1) × 512 = 33280
hidden layer 3 32 + 1 (bias) (512+1) × 32 = 16416
output layer 1 (32+1) × 1 = 33
total 625 50561
Tab.7  
layer number of nodes trainable weights
input layer 12 + 1(x) + 1 (bias)
hidden layer 1 64 + 1 (bias) (13+1) × 64 = 896
hidden layer 2 64 + 1 (bias) (64+1) × 64 = 4160
hidden layer 3 64 + 1 (bias) (64+1) × 64 = 4160
hidden layer 4 64 + 1 (bias) (64+1) × 64 = 4160
hidden layer 5 32 + 1 (bias) (64+1) × 32 = 2080
hidden layer 6 8 + 1 (bias) (32+1) × 8 = 264
output layer 1 (8+1) × 1 = 9
total 317 15729
Tab.8  
metric equation RANN1 RANN2
on train set on test set on train set on test set
mean absolute error MAE=1n× i=1n| yi fi| 0.201697 4.531986 0.000288 0.00103
mean squared error MSE=1n i=1n(yifi)2 0.11290 49.2773 7.2152e−07 9.6209e−06
coefficient of determination R2 =1i=1n(yifi)2 i=1n(yi y ¯)2 0.9999 0.95212 0.9999 0.9988
Tab.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
No. stable Δ (FEA) (mm) x* (m) y(x) (FEA) (mm) not failure? output 1 (Δ) (mm) output 2 (y(x)) (mm)
1 1 33.610 2.5 12.700 1 30.939 13.200
2 1 30.120 3.5 10.100 1 29.084 98.800
3 1 28.690 4 9.100 1 27.399 9.900
4 1 28.140 0.5 8.700 1 26.209 8.300
5 1 27.970 10 4.400 1 27.932 4.700
6 0 0 –1 –1
7 0 0 –1 –1
8 1 211.680 2.5 22.840 0 –1 –1
9 1 164.330 6.5 29.500 1 149.577 28.900
10 1 155.180 1.5 107.100 1 130.018 112.900
Tab.10  
1 J Kwon. Investigation of the influence of an excavation on adjacent excavations, using neural networks. Journal of the Southern African Institute of Mining and Metallurgy, 1998, 98( 3): 147– 156
2 M I Ramadan, E H Ramadan, M M Khashila. Cantilever contiguous pile wall for supporting excavation in clay. Geotechnical and Geological Engineering, 2018, 36( 3): 1545– 1558
https://doi.org/10.1007/s10706-017-0407-5
3 H Poulos, L Chen. Pile response due to unsupported excavation-induced lateral soil movement. Canadian Geotechnical Journal, 1996, 33( 4): 670– 677
https://doi.org/10.1139/t96-091-312
4 P Bransby, G Milligan. Soil deformations near cantilever sheet pile walls. Geotechnique, 1975, 25( 2): 175– 195
https://doi.org/10.1680/geot.1975.25.2.175
5 A P Singh, K Chatterjee. Ground settlement and deflection response of cantilever sheet pile wall subjected to surcharge loading. Indian Geotechnical Journal, 2020, 50( 4): 540– 549
6 M S Es-haghi, M Abbaspour, T Rabczuk. Factors and failure patterns analysis for undrained seismic bearing capacity of strip footing above void. International Journal of Geomechanics, 2021, 21( 10): 04021188
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002166
7 H C Phan, A S Dhar. Predicting pipeline burst pressures with machine learning models. International Journal of Pressure Vessels and Piping, 2021, 191 : 104384
https://doi.org/10.1016/j.ijpvp.2021.104384
8 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua, 2019, 59( 1): 345– 359
https://doi.org/10.32604/cmc.2019.06641
9 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362 : 112790
https://doi.org/10.1016/j.cma.2019.112790
10 A K Verma, T N Singh, N K Chauhan, K Sarkar. A hybrid FEM–ANN approach for slope instability prediction. Journal of The Institution of Engineers (India): Series A, 2016, 97( 3): 171– 180
11 C Peng, W Wu, B Zhang. Three-dimensional simulations of tensile cracks in geomaterials by coupling meshless and finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39( 2): 135– 154
https://doi.org/10.1002/nag.2298
12 A Chakraborty, D Goswami. Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arabian Journal of Geosciences, 2017, 10( 17): 385
https://doi.org/10.1007/s12517-017-3167-x
13 S Chern J H Tsai L K Chien C Y Huang. Predicting lateral wall deflection in top-down excavation by neural network. International Journal of Offshore and Polar Engineering, 2009, 19(2): 151− 157
14 H Moayedi, M Mosallanezhad, A S A Rashid, W A W Jusoh, M A Muazu. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Computing & Applications, 2020, 32( 2): 495– 518
15 M S Es-haghi M Sarcheshmehpour. A novel strategy for tall building optimization via combination of asymmetric genetic algorithm and machine learning methods. In: The 1st Online Conference on Algorithms. MDPI, 2021
16 H T Duong H C Phan T T Le N D Bui. Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model. Structures, 2020, 28: 757– 765
17 H C Phan, L Le-Thanh, H Nguyen-Xuan. A semi-empirical approach and uncertainty analysis to pipes under hydrogen embrittlement degradation. International Journal of Hydrogen Energy, 2022, 47( 8): 5677– 5691
18 H C Phan, N D Bui. Failure assessment of defected pipe under strike-slip fault with data-driven models accounting to the model uncertainty. Neural Computing & Applications, 2021, 34 : 1541– 1555
19 N Attoh-Okine, E S Fekpe. Strength characteristics modeling of lateritic soils using adaptive neural networks. Construction & Building Materials, 1996, 10( 8): 577– 582
https://doi.org/10.1016/S0950-0618(96)00021-9
20 M Pala, N Caglar, M Elmas, A Cevik, M Saribiyik. Dynamic soil–structure interaction analysis of buildings by neural networks. Construction & Building Materials, 2008, 22( 3): 330– 342
https://doi.org/10.1016/j.conbuildmat.2006.08.015
21 M D Nazzal, O Tatari. Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus. International Journal of Pavement Engineering, 2013, 14( 4): 364– 373
https://doi.org/10.1080/10298436.2012.671944
22 D R Groholski, Y M Hashash. Development of an inverse analysis framework for extracting dynamic soil behavior and pore pressure response from downhole array measurements. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37( 12): 1867– 1890
https://doi.org/10.1002/nag.2172
23 W Chan, Y Chow, L Liu. Neural network: An alternative to pile driving formulas. Computers and Geotechnics, 1995, 17( 2): 135– 156
https://doi.org/10.1016/0266-352X(95)93866-H
24 R Nazir, H Moayedi, A Pratikso, M Mosallanezhad. The uplift load capacity of an enlarged base pier embedded in dry sand. Arabian Journal of Geosciences, 2015, 8( 9): 7285– 7296
https://doi.org/10.1007/s12517-014-1721-3
25 A Ismail, D S Jeng. Modelling load–settlement behaviour of piles using high-order neural network (HON-PILE model). Engineering Applications of Artificial Intelligence, 2011, 24( 5): 813– 821
https://doi.org/10.1016/j.engappai.2011.02.008
26 P Samui, T Sitharam. Site characterization model using artificial neural network and kriging. International Journal of Geomechanics, 2010, 10( 5): 171– 180
https://doi.org/10.1061/(ASCE)1532-3641(2010)10:5(171
27 O Yilmaz, M Eser, M Berilgen. Applications of engineering seismology for site characterization. Journal of Earth Science, 2009, 20( 3): 546– 554
https://doi.org/10.1007/s12583-009-0045-9
28 Z Cao, Y Wang, D Li. Quantification of prior knowledge in geotechnical site characterization. Engineering Geology, 2016, 203 : 107– 116
https://doi.org/10.1016/j.enggeo.2015.08.018
29 V K Dwivedi, R K Dubey, S Thockhom, V Pancholi, S Chopra, B K Rastogi. Assessment of liquefaction potential of soil in Ahmedabad Region, Western India. Journal of Indian Geophysical Union, 2017, 21( 2): 116– 123
30 C Hsein Juang, C J Chen, Y M Tien. Appraising cone penetration test based liquefaction resistance evaluation methods: Artificial neural network approach. Canadian Geotechnical Journal, 1999, 36( 3): 443– 454
https://doi.org/10.1139/t99-011
31 A M Hanna, D Ural, G Saygili. Evaluation of liquefaction potential of soil deposits using artificial neural networks. Engineering Computations, 2007, 24( 1): 5– 16
https://doi.org/10.1108/02644400710718547
32 Z Liu, J Shao, W Xu, H Chen, Y Zhang. An extreme learning machine approach for slope stability evaluation and prediction. Natural Hazards, 2014, 73( 2): 787– 804
https://doi.org/10.1007/s11069-014-1106-7
33 B Gordan, D Jahed Armaghani, M Hajihassani, M Monjezi. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 2016, 32( 1): 85– 97
https://doi.org/10.1007/s00366-015-0400-7
34 A Li, S Khoo, A V Lyamin, Y Wang. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Automation in Construction, 2016, 65 : 42– 50
https://doi.org/10.1016/j.autcon.2016.02.004
35 I Ilia, I Koumantakis, D Rozos, G Koukis, P Tsangaratos. A geographical information system (GIS) based probabilistic certainty factor approach in assessing landslide susceptibility: The case study of Kimi, Euboea, Greece. In: IAEG XII Congress: Engineering Geology for Society and Territory. Turin: Springer, 2015, 1199– 1204
36 F Souza, N Ebecken. A data mining approach to landslide prediction. WIT Transactions on Information and Communication Technologies, 2004, 33
37 C Melchiorre, M Matteucci, A Azzoni, A Zanchi. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 2008, 94( 3-4): 379– 400
https://doi.org/10.1016/j.geomorph.2006.10.035
38 F K Huang G S Wang. ANN-based reliability analysis for deep excavation. In: EUROCON 2007—The International Conference on “Computer as a Tool”. Warsaw: IEEE, 2007
39 A T Goh, K Wong, B Broms. Estimation of lateral wall movements in braced excavations using neural networks. Canadian Geotechnical Journal, 1995, 32( 6): 1059– 1064
https://doi.org/10.1139/t95-103
40 J Jan, S L Hung, S Y Chi, J C Chern. Neural network forecast model in deep excavation. Journal of Computing in Civil Engineering, 2002, 16( 1): 59– 65
https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(59
41 Y Jun C Haiming. Artificial neural network’s application in intelligent prediction of surface settlement induced by foundation pit excavation. In: 2009 Second International Conference on Intelligent Computation Technology and Automation. Zhangjiajie: IEEE, 2009
42 C Koy, C Y Yune. Numerical analysis on consolidation of soft clay by sand drain with heat injection. Journal of the Korean Geotechnical Society, 2017, 33( 11): 45– 57
43 J Zhou, X Shi, K Du, X Qiu, X Li, H S Mitri. Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics, 2017, 17( 6): 04016129
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817
44 S Nikbakht, C Anitescu, T Rabczuk. Optimizing the neural network hyperparameters utilizing genetic algorithm. Journal of Zhejiang University, Science A, 2021, 22( 6): 407– 426
https://doi.org/10.1631/jzus.A2000384
45 W Zhang, R Zhang, C Wu, A T C Goh, S Lacasse, Z Liu, H Liu. State-of-the-art review of soft computing applications in underground excavations. Geoscience Frontiers, 2020, 11( 4): 1095– 1106
46 T Schanz, P A Vermeer, P G Bonnier. Beyond 2000 in Computational Geotechnics. London: Routledge, 1999, 281– 296
47 C Y Ou, C H Lai. Finite-element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal, 1994, 31( 2): 204– 214
https://doi.org/10.1139/t94-026
48 M Mansour, A Rashed, A Farag. Adopting numerical models for prediction of ground movements induced by deep excavation. International Journal of Recent Technology and Engineering, 2020, 8( 6): 976– 988
49 R B J Brinkgreve W M Swolfs E Engin D Waterman A Chesaru P Bonnier V Galavi. PLAXIS 2D Reference Manual. Delft: Delft University of Technology and PLAXIS bv, 2011
50 T T Le, H C Phan. Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method. Advances in Civil Engineering, 2020, 2020 : 8855069
51 T T Le. Prediction of tensile strength of polymer carbon nanotube composites using practical machine learning method. Journal of Composite Materials, 2021, 55( 6): 787– 811
https://doi.org/10.1177/0021998320953540
52 L Breiman L Breiman J H Friedman R A Olshen C J Stone. Classification and Regression Trees. Boca Raton: Chapman & Hall, 1984
53 A Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Sebastopol: O’Reilly Media, 2019
54 T D Pham, N D Bui, T T Nguyen, H C Phan. Predicting the reduction of embankment pressure on the surface of the soft ground reinforced by sand drain with random forest regression. IOP Conference Series: Materials Science and Engineering, 2020, 869( 7): 072027
55 W S McCulloch, W Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943, 5( 4): 115– 133
https://doi.org/10.1007/BF02478259
56 Y LeCun, Y Bengio. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 1995, 3361( 10): 1– 14
57 M A Carreira-Perpinan, G E Hinton. On contrastive divergence learning. In: The Tenth International Workshop on Artificial Intelligence and Statistics. Barbados: PMLR, 2005, 33– 40
58 G E Hinton, S Osindero, Y W Teh. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18( 7): 1527– 1554
https://doi.org/10.1162/neco.2006.18.7.1527
59 M A Ranzato F J Huang Y L Boureau Y LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007
60 A Chogueur, Z Abdeldjalil, P Reiffsteck. Parametric and comparative study of a flexible retaining wall. Periodica Polytechnica. Civil Engineering, 2018, 62( 2): 295– 307
61 M A Shahin, M B Jaksa, H R Maier. Artificial neural network applications in geotechnical engineering. Australian Geomechanics, 2001, 36( 1): 49– 62
62 H C Phan, T T Le, N D Bui, H T Duong, T D Pham. An empirical model for bending capacity of defected pipe combined with axial load. International Journal of Pressure Vessels and Piping, 2021, 191 : 104368
https://doi.org/10.1016/j.ijpvp.2021.104368
63 H C Phan, H T Duong. Predicting burst pressure of defected pipeline with principal component analysis and adaptive neuro fuzzy inference system. International Journal of Pressure Vessels and Piping, 2021, 189 : 104274
https://doi.org/10.1016/j.ijpvp.2020.104274
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed