Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (9): 1104-1126   https://doi.org/10.1007/s11709-022-0845-x
  本期目录
Compressive and cyclic flexural response of double-hooked-end steel fiber reinforced concrete
Demewoz W. MENNA, Aikaterini S. GENIKOMSOU(), Mark F. GREEN
Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
 全文: PDF(12941 KB)   HTML
Abstract

Recent developments on high-performance double-hooked-end steel fibers have enhanced the wide applications of steel fiber reinforced concrete (SFRC). This study presents the compressive properties and the cyclic flexural performance of the SFRC that were experimentally examined. Three different double-hooked-end steel fibers at 0.25%, 0.5%, 0.75%, and 1% volume fractions were considered. All fiber types had similar length to diameter ratios, while the first two fiber types had similar anchorage mechanisms (4D) and tensile strength and the third type had different anchorage mechanism (5D) and a higher tensile strength. The increased volumetric ratio of the fibers increased the post-peak compressive strain (ductility), the tensile strength, and the cyclic flexural strength and cumulative energy dissipation characteristics of the SFRC. Among the 4D fibers, the mixtures with the larger steel fibers showed higher flexural strength and more energy dissipation compared to the SFRCs with smaller size fibers. For 1% steel fiber dosage, 4D and 5D specimens showed similar cyclic flexural responses. Finally, a 3D finite element model that can predict the monotonic and cyclic flexural responses of the double-hooked-end SFRC was developed. The calibration process considered the results obtained from the inverse analysis to determine the tensile behavior of the SFRC.

Key wordssteel fiber reinforced concrete    fiber geometry    cyclic loading    energy dissipation    finite element modeling    inverse analysis
收稿日期: 2021-10-26      出版日期: 2022-12-22
Corresponding Author(s): Aikaterini S. GENIKOMSOU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(9): 1104-1126.
Demewoz W. MENNA, Aikaterini S. GENIKOMSOU, Mark F. GREEN. Compressive and cyclic flexural response of double-hooked-end steel fiber reinforced concrete. Front. Struct. Civ. Eng., 2022, 16(9): 1104-1126.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0845-x
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I9/1104
mixture steel fiber batch weight (kg/m3) SP* (mL) slump (mm)
type Vf (%) cement water gravel sand fiber
CS 456 228 768 891.3 120
FRCA0.25 A 0.25 456 228 766 886.7 19.5 20 120
FRCA0.5 0.50 456 228 764 882.1 39.0 23 130
FRCA0.75 0.75 456 228 762 877.5 58.5 25 130
FRCA1 1.00 456 228 760 873.0 78.0 28 125
FRCB0.25 B 0.25 456 228 766 886.7 19.5 20 135
FRCB0.5 0.50 456 228 764 882.1 39.0 23 130
FRCB0.75 0.75 456 228 762 877.5 58.5 25 135
FRCB1 1.00 456 228 760 873.0 78.0 28 125
FRCC0.25 C 0.25 456 228 766 886.7 19.5 20 135
FRCC0.5 0.50 456 228 764 882.1 39.0 23 135
FRCC0.75 0.75 456 228 762 877.5 58.5 25 130
FRCC1 1.00 456 228 760 873.0 78.0 28 135
Tab.1  
fiber type end hook length, Lf (mm) diameter, Df (mm) L f/ D f tensile strength (MPa)
36 0.55 65 1850
60 0.90 65 1850
60 0.90 65 2300
Tab.2  
Fig.1  
Fig.2  
mixture 28th d compression 90th d compression 28th d splitting tension
fc (MPa) SD (MPa) fc (MPa) SD (MPa) ft (MPa) SD (MPa)
CS 38.9 0.4 39.5 0.5 4.3 0.4
FRCA0.25 36.6 4.1 45.2 3.3 4.9 0.6
FRCA0.5 37.7 1.7 46.1 1.8 5.9 0.1
FRCA0.75 36.0 2.6 47.5 3.4 6.3 0.0
FRCA1 32.7 3.4 47.1 3.4 6.7 0.1
FRCB0.25 36.4 3.2 50.9 1.4 5.4 0.2
FRCB0.5 35.6 3.7 47.7 2.0 5.5 0.1
FRCB0.75 36.9 6.0 47.2 0.9 5.8 0.4
FRCB1 43.0 1.7 44.5 3.1 8.1 0.5
FRCC0.25 43.0 3.1 43.5 1.4 5.1 0.4
FRCC0.5 43.1 1.3 45.7 3.5 5.8 0.1
FRCC0.75 43.4 1.1 46.8 4.4 6.4 0.5
FRCC1 43.2 5.5 48.9 1.4 7.8 0.2
Tab.3  
Fig.3  
Fig.4  
model average standard deviation between model and experiment
f cf (MPa) εcof (10−3) εuf (10−3) Ecf (GPa) f tf (MPa)
Thomas and Ramaswamy [16] 2.51 0.16 7.01 0.73
Nataraja et al. [44] 2.67 0.18 7.74 6.22
Ou et al. [45] 2.50 0.35 1.09 1.49
Lee et al. [43] 0.25 0.95 3.70
Tab.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
parameter value
compressive strength, fc (MPa) 48.9
tensile strength, fFU (MPa) 3.95
modulus of elasticity, E c (GPa) 20.45
dilation angle, ψ (° ) 30
eccentricity 0.1
stress ratio, σb0 /σc0 1.16
shape factor, kc 0.667
viscosity parameter 0
Tab.5  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
reference model
Thomas and Ramaswamy [16] f cf= fc+0.05476f c RI v+1.02RIv ( MPa)f tf= 0.6874 (f c)0.5+0.3142 (fc)0.5RIv +0.052RI(MPa)f tf = splitting tensile strengthE cf= 4.997(f c)0.5+0.5 fcR Iv+0.39R I(GPa ) εcof=[528.513 (f c) 0.3943+4.2605f cRIv +484.95RIv]×106E c=4.2f c(GPa )for30 MPa?f c?75MPaRIv =V fLf /Df ,Vf = volume fraction of steel fiber
Nataraja et al. [44] σ fcf=β( εεcof)β 1+ (εεcof)βfcf=fc +2.1604(R Iw)εcof=εco+446×10 6(R Iw)β=1.093+0.7132( RIw)0.926 for hooked-end fibersR Iw= Wf Lf/Df ,Wf = Weight fraction of steel fiberσand ε denote points on the stress strain relation graphwithout specific experimental data εco=0.002
Ou et al. [45] σ fcf=β( εεcof)β 1+ (εεcof)βfcf=fc +2.35(R Iv)(MPa)ε cof= εco+0.0007 (R Iv)β= 0.71( RIv)22.0(RIv)+3.05RIv =V fLf /Df ,Vf = volume fraction of steel fiber
Lee et al. [43] εof=( 0.0003 RI v+0.0018)( fcf)0.12E cf= ( 367R Iv+5520 )(fcf)0.41(MPa)σ= f cf[A ( ε εcof)A1+ ( εεcof)B]for ε c /εo1.0, A=B=[1 1(fcfεcof Ecf)]forεcf/εcof1.0A=1+0.723 [RIv]0.957forεcf /εcof>1.0B=( f cf50)0.064[1+0.882 (R Iv) 0.882]?Aforεcf /εcof>1.0RIv =V fLf /Df ,Vf = volume fraction of steel fiber
  
1 M di Prisco, G Plizzari, L Vandewalle. Fibre reinforced concrete: New design perspectives. Materials and Structures, 2009, 42(9): 1261–1281
https://doi.org/10.1617/s11527-009-9529-4
2 544.9R-17 ACI: Report on Design and Construction of Steel Fiber-Reinforced Concrete Elevated Slabs. Farmington Hills: American Concrete Institute, 2017
3 M Soutsos, T Le, A Lampropoulos. Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Construction & Building Materials, 2012, 36: 704–710
https://doi.org/10.1016/j.conbuildmat.2012.06.042
4 Y Mohammadi, S Singh, S Kaushik. Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Construction & Building Materials, 2008, 22(5): 956–965
https://doi.org/10.1016/j.conbuildmat.2006.12.004
5 K Chanthabouala, S Teng, J Chandra, K H Tan, C P Ostertag. Punching tests of double-hooked-end fiber reinforced concrete slabs. ACI Structural Journal, 2018, 115(6): 1777–1789
https://doi.org/10.14359/51706891
6 M A SuttonJ J OrteuH Schreier. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. Springer Science & Business Media, 2009
7 S Y Alam, J Saliba, A Loukili. Fracture examination in concrete through combined digital image correlation and acoustic emission techniques. Construction & Building Materials, 2014, 69: 232–242
https://doi.org/10.1016/j.conbuildmat.2014.07.044
8 D Aggelis, S Verbruggen, E Tsangouri, T Tysmans, D Van Hemelrijck. Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation. Construction & Building Materials, 2013, 47: 1037–1045
https://doi.org/10.1016/j.conbuildmat.2013.06.005
9 M Mahal, T Blanksvärd, B Täljsten, G Sas. Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams. Engineering Structures, 2015, 105: 277–288
https://doi.org/10.1016/j.engstruct.2015.10.017
10 B Gencturk, K Hossain, A Kapadia, E Labib, Y L Mo. Use of digital image correlation technique in full-scale testing of prestressed concrete structures. Measurement, 2014, 47: 505–515
https://doi.org/10.1016/j.measurement.2013.09.018
11 B Boulekbache, M Hamrat, M Chemrouk, S Amziane. Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation. Materials and Structures, 2015, 48(8): 2713–2726
https://doi.org/10.1617/s11527-014-0348-x
12 M Hamrat, B Boulekbache, M Chemrouk, S Amziane. Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique. Construction & Building Materials, 2016, 106: 678–692
https://doi.org/10.1016/j.conbuildmat.2015.12.166
13 F Bencardino, L Rizzuti, G Spadea, R N Swamy. Stress−strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 2008, 20(3): 255–263
https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255
14 Ş Yazıcı, G İnan, V Tabak. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction & Building Materials, 2007, 21(6): 1250–1253
https://doi.org/10.1016/j.conbuildmat.2006.05.025
15 D Y Yoo, Y S Yoon, N Banthia. Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 2015, 64: 84–92
https://doi.org/10.1016/j.cemconcomp.2015.10.001
16 J Thomas, A Ramaswamy. Mechanical properties of steel fiber-reinforced concrete. Journal of Materials in Civil Engineering, 2007, 19(5): 385–392
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385
17 L R Taerwe. Influence of steel fibers on strain-softening of high-strength concrete. ACI Materials Journal, 1993, 89(1): 54–60
18 J Katzer, J Domski. Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction & Building Materials, 2012, 34: 243–248
https://doi.org/10.1016/j.conbuildmat.2012.02.058
19 J Han, M Zhao, J Chen, X Lan. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Construction & Building Materials, 2019, 209: 577–591
https://doi.org/10.1016/j.conbuildmat.2019.03.086
20 S Abdallah, M Fan. Anchorage mechanisms of novel geometrical hooked-end steel fibres. Materials & Structures, 2017, 50(2): 139
https://doi.org/10.1617/s11527-016-0991-5
21 T S Ng, S J Foster, M L Htet, T N S Htut. Mixed mode fracture behaviour of steel fibre reinforced concrete. Materials and Structures, 2014, 47(1−2): 67–76
https://doi.org/10.1617/s11527-013-0045-1
22 S Abdallah, D W Rees, S H Ghaffar, M Fan. Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete. Construction & Building Materials, 2018, 178: 484–494
https://doi.org/10.1016/j.conbuildmat.2018.05.191
23 A Elmenshawi, T Brown. Hysteretic energy and damping capacity of flexural elements constructed with different concrete strengths. Engineering Structures, 2010, 32(1): 297–305
https://doi.org/10.1016/j.engstruct.2009.09.016
24 L Daniel, A Loukili. Behavior of high strength fiber-reinforced concrete beams under cyclic loading. ACI Structural Journal, 2002, 99(3): 248–256
25 B Boulekbache, M Hamrat, M Chemrouk, S Amziane. Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construction & Building Materials, 2016, 126: 253–262
https://doi.org/10.1016/j.conbuildmat.2016.09.035
26 C E Chalioris, P K Kosmidou, C G Karayannis. Cyclic response of steel fiber reinforced concrete slender beams: An experimental study. Materials (Basel), 2019, 12(9): 1398
https://doi.org/10.3390/ma12091398 pmid: 31035704
27 M G Naghibdehi, M Naghipour, M Rabiee. Behaviour of functionally graded reinforced-concrete beams under cyclic loading. Gradevinar, 2015, 67(5): 427–439
28 N Ganesan, P Indira, M Sabeena. Behaviour of hybrid fibre reinforced concrete beam–column joints under reverse cyclic loads. Materials & Design, 2014, 54: 686–693
https://doi.org/10.1016/j.matdes.2013.08.076
29 F Radtke, A Simone, L Sluys. A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres. Engineering Fracture Mechanics, 2010, 77(4): 597–620
https://doi.org/10.1016/j.engfracmech.2009.11.014
30 V M Cunha, J A Barros, J Sena-Cruz. An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cement and Concrete Research, 2011, 41(1): 64–76
https://doi.org/10.1016/j.cemconres.2010.09.007
31 L A Jr Bitencourt, O L Manzoli, T N Bittencourt, F J Vecchio. Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers. International Journal of Solids and Structures, 2019, 159: 171–190
https://doi.org/10.1016/j.ijsolstr.2018.09.028
32 L Huo, J Bi, Y Zhao, Z Wang. Constitutive model of steel fiber reinforced concrete by coupling the fiber inclining and spacing effect. Construction & Building Materials, 2021, 280: 122423
https://doi.org/10.1016/j.conbuildmat.2021.122423
33 Y Chi, L Xu, H Yu. Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation. Composite Structures, 2014, 111: 497–509
https://doi.org/10.1016/j.compstruct.2014.01.025
34 B Luccioni, G Ruano, F Isla, R Zerbino, G Giaccio. A simple approach to model SFRC. Construction & Building Materials, 2012, 37: 111–124
https://doi.org/10.1016/j.conbuildmat.2012.07.027
35 J Roesler, G H Paulino, K Park, C Gaedicke. Concrete fracture prediction using bilinear softening. Cement and Concrete Composites, 2007, 29(4): 300–312
https://doi.org/10.1016/j.cemconcomp.2006.12.002
36 C S Association. Canadian Highway Bridge Design Code (CHBDC)-Fiber Reinforced Concrete: Annex 8.1 of CSA-S6. 2018
37 S KosmatkaB KerkhoffR McGrathR Hooton. Design and Control of Concrete Mixtures, eighth Canadian Edition. Ottawa: Cement Association of Canada, 2011
38 ASTM StandardC39/C39M-20. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken: ASTM International, 2020
39 ASTM StandardC469/C469M-14. Standard Test Method for Static Modulus of Elasticity and Poisson’s ratio of Concrete in Compression. West Conshohocken: ASTM International, 2014
40 ASTM StandardC496/C496M-17. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. West Conshohocken: ASTM International, 2017
41 ASTM StandardC1609/C1609M-19. Standard Test Method for Flexural Performance of Fiber-reinforced Concrete (Using Beam with Third-point Loading). West Conshohocken: ASTM International, 2019
42 B Boulekbache, M Hamrat, M Chemrouk, S Amziane. Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete. Construction & Building Materials, 2012, 27(1): 6–14
https://doi.org/10.1016/j.conbuildmat.2011.07.015
43 S C Lee, J H Oh, J Y Cho. Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials (Basel), 2015, 8(4): 1442–1458
https://doi.org/10.3390/ma8041442 pmid: 28788011
44 M Nataraja, N Dhang, A Gupta. Stress–strain curves for steel-fiber reinforced concrete under compression. Cement and Concrete Composites, 1999, 21(5−6): 383–390
https://doi.org/10.1016/S0958-9465(99)00021-9
45 Y C Ou, M S Tsai, K Y Liu, K C Chang. Compressive behavior of steel-fiber-reinforced concrete with a high reinforcing index. Journal of Materials in Civil Engineering, 2012, 24(2): 207–215
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
46 H Krenchel. Fibre Spacing and Specific Fibre Surface. Fibre Reinforced Cement and Concrete. Lancaste: The Construction Press, 1975
47 P Soroushian, C D Lee. Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Materials Journal, 1990, 87(5): 433–439
48 D Dupont, L Vandewalle. Distribution of steel fibres in rectangular sections. Cement and Concrete Composites, 2005, 27(3): 391–398
https://doi.org/10.1016/j.cemconcomp.2004.03.005
49 A Matzenmiller, J Lubliner, R L Taylor. A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials, 1995, 20(2): 125–152
https://doi.org/10.1016/0167-6636(94)00053-0
50 X Ren, J Li. Multi-scale based fracture and damage analysis of steel fiber reinforced concrete. Engineering Failure Analysis, 2013, 35: 253–261
https://doi.org/10.1016/j.engfailanal.2013.01.029
51 D S S Corporation. Manual, ABAQUS User. 6.10-EF, 2010
52 D W Menna, A S Genikomsou. Punching shear response of concrete slabs strengthened with ultrahigh-performance fiber-reinforced concrete using finite-element methods. Practice Periodical on Structural Design and Construction, 2021, 26(1): 04020057
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000546
53 B Wahalathantri, D Thambiratnam, T Chan, S Fawzia. A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. In: Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing. Brisbane: Queensland University of Technology, 2011, 260–264
54 T Kanakubo. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. Journal of Advanced Concrete Technology, 2006, 4(1): 3–17
https://doi.org/10.3151/jact.4.3
55 TC162-TDF R.. Test and design methods for steel fibre reinforced concrete: Uniaxial tension test for steel fibre reinforced concrete. Materials and Structures, 2001, 34: 3–6
https://doi.org/10.1007/BF02482193
56 A Abrishambaf, J A Barros, V M Cunha. Tensile stress–crack width law for steel fibre reinforced self-compacting concrete obtained from indirect (splitting) tensile tests. Cement and Concrete Composites, 2015, 57: 153–165
https://doi.org/10.1016/j.cemconcomp.2014.12.010
57 J Á López, P Serna, J Navarro-Gregori, H J C P B E Coll. A simplified five-point inverse analysis method to determine the tensile properties of UHPFRC from unnotched four-point bending tests. Composites. Part B, Engineering, 2016, 91: 189–204
https://doi.org/10.1016/j.compositesb.2016.01.026
58 D Gao, C Ding, Y Pang, G Chen. An inverse analysis method for multi-linear tensile stress-crack opening relationship of 3D/4D/5D steel fiber reinforced concrete. Construction & Building Materials, 2021, 309: 125074
https://doi.org/10.1016/j.conbuildmat.2021.125074
59 Z G RalliA S GenikomsouS J Pantazopoulou. Comparative evaluation of nonlinear FEA inverse analysis of tensile properties of UHPFRC. In: FIB Symposium 2021 Concrete Structures: New Trends for Eco-Efficiency and Performance. Lisbon: International Federation for Structural Concrete, 2021
60 Y Yang, B Massicotte, A S Genikomsou, S J Pantazopoulou, D Palermo. Comparative investigation on tensile behaviour of UHPFRC. Materials and Structures, 2021, 54(4): 147
https://doi.org/10.1617/s11527-021-01747-1
61 A S Genikomsou, M A Polak. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 2015, 98: 38–48
https://doi.org/10.1016/j.engstruct.2015.04.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed