Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (6): 762-780   https://doi.org/10.1007/s11709-022-0847-8
  本期目录
Analysis on damage causes of built-in corridor in core rock-fill dam on thick overburden: A case study
Jia’ao YU1(), Zhenzhong SHEN1,2, Zhangxin HUANG1
1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China
2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China
 全文: PDF(9315 KB)   HTML
Abstract

The stress state of the built-in corridor in core rock-fill dam on thick overburden is extremely complex, which may produce cracking and damage. The purpose of this paper was to investigate the effect of thick overburden on the stress and deformation of the built-in corridor in a rock-fill dam, and ascertain the damage causes of the corridor. The rationality of the analysis method for corridor with similar structure is another focus. The approach is based on finite-element method and the calculation result accuracy is verified by the field monitoring data. The improved analysis method for corridors with similar structure is proposed by comparing various corridor load calculation methods and concrete constitutive models. Results demonstrate that the damage causes of the corridor are the deformability difference between the overburden and concrete and the special structural form. And the calculation model considering dam construction process, contact between concrete and surrounding soil, and concrete damage plasticity can reasonably reflect the mechanical behavior of the corridor. The research conclusions may have a reference significance for the analysis of tunnels similar to built-in corridors.

Key wordsthick overburden    built-in corridor    stress    deformation    causes for damage    concrete damaged plasticity
收稿日期: 2022-01-09      出版日期: 2022-10-20
Corresponding Author(s): Jia’ao YU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(6): 762-780.
Jia’ao YU, Zhenzhong SHEN, Zhangxin HUANG. Analysis on damage causes of built-in corridor in core rock-fill dam on thick overburden: A case study. Front. Struct. Civ. Eng., 2022, 16(6): 762-780.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0847-8
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I6/762
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
materials γ (kN·m−3) E (GPa) v
new corridor lining 2400 30 0.167
original corridor lining 2400 24 0.167
concrete cut-off wall 2400 30 0.167
Tab.1  
Fig.6  
materials γ (kN·m−3) K n c (kPa) Rf φ0 (º ) G D F Kur Δ φ (º )
rock-fill
 I 21.29 1000 0.35 0 0.79 48.5 0.43 4.5 0.25 2000 9.2
 II 21.09 1200 0.35 0 0.83 50.0 0.40 4.0 0.20 2400 9.0
 III 20.31 1000 0.28 0 0.82 51.5 0.38 5.4 0.19 2000 6.6
 IV 20.04 1100 0.35 0 0.79 48.5 0.43 4.5 0.25 2200 9.2
core wall 22.34 494 0.4 66 0.82 28.9 0.43 2.8 0.09 988 0.0
contact clay 19.60 150 0.5 22 0.72 28.0 0.36 2.0 0.06 250 0.0
transition layer 20.58 990 0.15 0 0.82 54.1 0.38 2.4 0.22 1980 11.6
inverted filter layer 21.17 850 0.4 0 0.74 47.0 0.40 3.0 0.10 1700 8.5
overburden 23.82 600 0.5 30 0.76 30.0 0.35 3.5 0.03 1400 0.0
Tab.2  
contact surface types Rf K1 K2 n Kn δ (º )
contact clay / corridor concrete 0.92 10000 10000 0.5 999000 20
overburden layer / corridor concrete 0.92 10000 10000 0.5 999000 20
overburden layer / cut-off wall concrete 0.92 8000 8000 0.5 999000 10
residual at the bottom of cut-off wall 0.6 15000 15000 0.5 50000 41
Tab.3  
Fig.7  
Fig.8  
Fig.9  
parameter value
dilation angle 30
eccentricity 0.1
σb0/σc0 1.16
Kc 0.667
viscosity parameter 1.0 × 10−5
Tab.4  
calculation schemes constitutive model of concrete analysis method of corridor loads
scheme 1 linear elasticity calculation formula of surrounding pressure, etc.
scheme 2 linear elasticity considering actual dam construction
scheme 3 CDP considering actual dam construction
Tab.5  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
number σxx σzz σzx σ1 σ3 λ (º )
I –803.81 –20077.24 3304.30 –253.05 –20628.00 9.5
II –780.90 –17142.48 2467.20 –416.96 –17506.42 8.5
III –582.32 –15649.19 1461.28 –441.90 –15789.61 5.7
Tab.6  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
calculation schemes 1st principal stress 3rd principal stress vertical normal stress
Max Min Max Min Max Min
scheme 1
Terzaghi formula 5.23 –2.23 0.94 –11.53 4.71 –6.90
empirical formula 5.78 –2.22 1.06 –10.97 4.85 –6.65
scheme 2 3.36 –1.49 –0.20 –20.63 –0.16 –12.93
scheme 3 1.69 –2.24 0.07 –17.26 0.33 –17.02
Tab.7  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
1 M Fisk. Late Quaternary Deltaic deposits of the Mississippi River (local sedimentation and basin tectonics). Geological Society of America, 1955, 62 : 279– 302
2 S H Liu, L J Wang, Z J Wang, E Bauer. Numerical stress-deformation analysis of cut-off wall in clay-core rockfill dam on thick overburden. Water Science and Engineering, 2016, 9( 3): 219– 226
https://doi.org/10.1016/j.wse.2016.11.002
3 H Ma, W Sui, J Ni. Environmentally sustainable mining: A case study on surface subsidence control of grouting into overburden. Environmental Earth Sciences, 2019, 78( 10): 320
https://doi.org/10.1007/s12665-019-8313-1
4 A Akhenak, E Duviella, L Bako, S Lecoeuche. Online fault diagnosis using recursive subspace identification: Application to a dam-gallery open channel system. Control Engineering Practice, 2013, 21( 6): 797– 806
https://doi.org/10.1016/j.conengprac.2013.02.013
5 H Mirzabozorg, M Ghaemian, A Roohezamin. The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance. Structural Monitoring and Maintenance, 2019, 6( 2): 103– 124
6 S Türkmen. Water leakage from the power tunnel of Gezende Dam, southern Turkey: A case study. Environmental Earth Sciences, 2010, 61( 2): 419– 427
https://doi.org/10.1007/s12665-009-0354-4
7 W G Zhang, F Liu, L C Jiao. Analyze and evaluation of deformation of structural joint and leakage at Qiaoqi Dam’s foundation gallery. Modern Rockfill Dams, 2009, 767– 773
8 R K Goel, J L Jethwa, A G Paithankar. Tunnelling through the young Himalayas—A case history of the Maneri-Uttarkashi power tunnel. Engineering Geology, 1995, 39( 1−2): 31– 44
https://doi.org/10.1016/0013-7952(94)00002-J
9 S S Jeong, Y C Han, Y M Kim, D H Kim. Evaluation of the NATM tunnel load on concrete lining using the ground lining interaction model. KSCE Journal of Civil Engineering, 2014, 18( 2): 672– 682
https://doi.org/10.1007/s12205-014-0597-9
10 Y Jiang, H Yoneda, Y Tanabashi. Theoretical estimation of loosening pressure on tunnels in soft rocks. Tunnelling and Underground Space Technology, 2001, 16( 2): 99– 105
https://doi.org/10.1016/S0886-7798(01)00034-7
11 H J Kim. Estimation for tunnel lining loads. Dissertation for the Doctoral Degree. Edmonton: University of Alberta, 1997
12 Y Zheng, C Qiu. On the Limitations of Protodyakonov’s Pressure Arch Theory. Modern Tunnelling Technology, 2016, 53( 2): 1– 8
13 H Zou X Wei Y Sun. Study on difference of Chinese and foreign structural analysis method of tunnel lining. Yangtze River, 2016, 47(6): 48− 64 (in Chinese)
14 SL279-2002. Water Conservancy Industry Standard of the People’s Republic of China. Specification for Design of Hydraulic Tunnel. Beijing: China Water Power Press, 2003 (in Chinese)
15 TB10003-2016. Industrial Standards of the People’s Republic of China. Code for Design of Railway Tunnel. Beijing: China Railway Press, 2017 (in Chinese)
16 50010 GB-2010. Code for Design of Concrete Structures. Beijing: China Architecture & Building Press, 2015 (in Chinese)
17 U Häussler-Combe, J Hartig. Formulation and numerical implementation of a constitutive law for concrete with strain-based damage and plasticity. International Journal of Non-linear Mechanics, 2008, 43( 5): 399– 415
https://doi.org/10.1016/j.ijnonlinmec.2008.01.005
18 B Chiaia, A P Fantilli, P Vallini. Combining fiber-reinforced concrete with traditional reinforcement in tunnel linings. Engineering Structures, 2009, 31( 7): 1600– 1606
https://doi.org/10.1016/j.engstruct.2009.02.037
19 S Y Lee, S H O Lee, D I K Shin, Y K Son, C S Han. Development of an inspection system for cracks in a concrete tunnel lining. Canadian Journal of Civil Engineering, 2007, 34( 8): 966– 975
https://doi.org/10.1139/l07-008
20 T T Wang. Characterizing crack patterns on tunnel linings associated with shear deformation induced by instability of neighboring slopes. Engineering Geology, 2010, 115( 1-2): 80– 95
https://doi.org/10.1016/j.enggeo.2010.06.010
21 M L Nehdi, S Abbas. Exploratory study of ultra-high performance fiber reinforced concrete tunnel lining segments with varying steel fiber lengths and dosages. Engineering Structures, 2015, 101 : 733– 742
22 T Yu, A Zhu, Y Chen. Efficient crack detection method for tunnel lining surface cracks based on infrared images. Journal of Computing in Civil Engineering, 2017, 31( 3): 04016067
23 A Manuello, G Niccolini, A Carpinteri. AE monitoring of a concrete arch road tunnel: Damage evolution and localization. Engineering Fracture Mechanics, 2019, 210 : 279– 287
https://doi.org/10.1016/j.engfracmech.2018.07.029
24 L P Mikkelsen, S J Klitgaard, C F Niordson, B F Sørensen. Tunneling cracks in arbitrary oriented off-axis lamina. International Journal of Fracture, 2020, 226( 2): 161– 179
https://doi.org/10.1007/s10704-020-00485-9
25 J Gu, P Chen. A failure criterion for isotropic materials based on Mohr’s failure plane theory. Mechanics Research Communications, 2018, 87 : 1– 6
https://doi.org/10.1016/j.mechrescom.2017.11.008
26 J M Duncan, C Y Chang. Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, 1970, 96( 5): 1629– 1653
https://doi.org/10.1061/JSFEAQ.0001458
27 R E Goodman, R L Taylor, T L Brekke. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, 1968, 94( 3): 637– 659
https://doi.org/10.1061/JSFEAQ.0001133
28 D Huang, A Tang, Z Wang. Analysis of pipe-soil interactions using goodman contact element under seismic action. Soil Dynamics and Earthquake Engineering, 2020, 139( 5): 106290
https://doi.org/10.1016/j.soildyn.2020.106290
29 R R Pedersen, A Simone, L J Sluys. An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model. Engineering Fracture Mechanics, 2008, 75( 13): 3782– 3805
https://doi.org/10.1016/j.engfracmech.2008.02.004
30 T Yu, J G Teng, Y L Wong, S L Dong. Finite element modeling of confined concrete-II: Plastic-damage model. Steel Construction, 2010, 32( 3): 680– 691
31 R Abu Al-Rub, S M Kim. Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Engineering Fracture Mechanics, 2010, 77( 10): 1577– 1603
https://doi.org/10.1016/j.engfracmech.2010.04.007
32 M Jukic B Brank A Ibrahimbegovic. Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity. Engineering Structures, 2014: 75: 507– 527
33 J B Yan, X Qian, J Liew, L Zong. Damage plasticity based numerical analysis on steel–concrete–steel sandwich shells used in the Arctic offshore structure. Engineering Structures, 2016, 117 : 542– 559
34 H Othman, H Marzouk. Applicability of damage plasticity constitutive model for ultra-high performance fibre-reinforced concrete under impact loads. International Journal of Impact Engineering, 2018, 114 : 20– 31
https://doi.org/10.1016/j.ijimpeng.2017.12.013
35 M Kenawy, S Kunnath, S Kolwankar, A Kanvinde. Concrete uniaxial nonlocal damage-plasticity model for simulating post-peak response of reinforced concrete beam−columns under cyclic loading. Journal of structural engineering, 2020, 146( 5): 04020052
36 S Seok, G Haikal, J A Ramirez, L N Lowes, J Lim. Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2). Engineering Structures, 2020, 221 : 110984
https://doi.org/10.1016/j.engstruct.2020.110984
37 A Lj, A Mao, J B Jian, A Au. Modelling concrete slabs subjected to fires using nonlinear layered shell elements and concrete damage-plasticity material. Engineering Structures, 2021, 234 : 111977
38 W Nechnech, F Meftah, J M Reynouard. An elasto-plastic damage model for plain concrete subjected to high temperatures. Engineering Structures, 2002, 24( 5): 597– 611
https://doi.org/10.1016/S0141-0296(01)00125-0
39 W B Krätzig, R Pölling. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Computers & Structures, 2004, 82( 15−16): 1201– 1215
https://doi.org/10.1016/j.compstruc.2004.03.002
40 DC Feng, G Wu, Z Y Sun, J G Xu. A flexure-shear Timoshenko fiber beam element based on softened damage-plasticity model. Engineering Structures, 2017, 140 : 483– 497
41 T Yu, J G Teng, Y L Wong, S L Dong. Finite element modeling of confined concrete-I: Drucker−Prager type plasticity model. Engineering Structures, 2010, 32( 3): 665– 679
https://doi.org/10.1016/j.engstruct.2009.11.014
42 J F Jiang, Y F Wu. Identification of material parameters for Drucker−Prager plasticity model for FRP confined circular concrete columns. International Journal of Solids and Structures, 2012, 49( 3-4): 445– 456
https://doi.org/10.1016/j.ijsolstr.2011.10.002
43 J Lubliner, J Oliver, S Oller, E Onate. A plastic-damage model for concrete. International Journal of Solids and Structures, 1989, 25( 3): 299– 326
https://doi.org/10.1016/0020-7683(89)90050-4
44 A S Genikomsou, M A Polak. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 2015, 98 : 38– 48
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed