Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (6): 729-743   https://doi.org/10.1007/s11709-022-0854-9
  本期目录
Investigation of the parameters affecting the behavior of RC beams strengthened with FRP
Kadir SENGUN, Guray ARSLAN()
Department of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey
 全文: PDF(5002 KB)   HTML
Abstract

Three-point bending tests were carried out on nineteen Reinforced Concrete (RC) beams strengthened with FRP in the form of completely wrapping. The strip width to spacing ratios, FRP type, shear span to effective depth ratios, the number of FRP layers in shear, and the effect of stirrups spacing were the parameters investigated in the experimental study. The FRP contribution to strength on beams having the same strip width to spacing ratios could be affected by the shear span to effective depth ratios and stirrups spacing. The FRP contributions to strength were less on beams with stirrups in comparison to the tested beams without stirrups. Strengthening RC beams using FRP could change the failure modes of the beams compared to the reference beam. In addition to the experimental study, a number of equations used to predict the FRP contribution to the shear strength of the strengthened RC beams were assessed by using a limited number of beams available in the literature. The effective FRP strain is predicted by using test results, and this prediction is used to calculate the FRP contribution to shear strength in ACI 440.2R (2017) equation. Based on the statistical values of the data, the proposed equation has the lowest coefficient of variation (COV) value than the other equations.

Key wordscarbon    glass    strengthening    shear strength    reinforced concrete beam    fiber reinforced polymer
收稿日期: 2022-02-11      出版日期: 2022-10-20
Corresponding Author(s): Guray ARSLAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(6): 729-743.
Kadir SENGUN, Guray ARSLAN. Investigation of the parameters affecting the behavior of RC beams strengthened with FRP. Front. Struct. Civ. Eng., 2022, 16(6): 729-743.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0854-9
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I6/729
Fig.1  
series specimen FRP l (mm) ln (mm) s (mm) wf (mm) nf sf (mm) ns sn (mm) ρf wf/sf
K3.5S0 K3.5S0-R 1600 1400
K3.5S0-C-5 CFRP 1600 1400 50 2 100 1 50 0.0023 0.50
K3.5S0-C-10 1600 1400 150 1 100 0.0015 0.33
K3.5S0-G-5 GFRP 1600 1400 100 1 50 0.0024 0.50
K3.5S0-G-10 1600 1400 150 1 100 0.0016 0.33
K4.5S0 K4.5S0-R 2000 1800
K4.5S0-C-5 CFRP 2000 1800 50 2 100 1 50 0.0023 0.50
K4.5S0-C-5-2K 2000 1800 100 2 50 0.0045 0.50
K4.5S0-C-10 2000 1800 150 1 100 0.0015 0.33
K4.5S0-C-10-2K 2000 1800 150 2 100 0.0030 0.33
K3.5S20 K3.5S20-R 1600 1400 200
K3.5S20-C-5 CFRP 1600 1400 200 50 2 100 1 50 0.0023 0.50
K3.5S20-C-10 1600 1400 200 150 1 100 0.0015 0.33
K2.5S20 K2.5S20-R 1200 1000 200
K2.5S20-C-5 CFRP 1200 1000 200 50 2 100 1 50 0.0023 0.50
K2.5S20-C-10 1200 1000 200 150 1 100 0.0015 0.33
K2.5S20-C-10-2K 1200 1000 200 150 2 100 0.0030 0.33
K2.5S20-G-5 GFRP 1200 1000 200 100 1 50 0.0024 0.50
K2.5S20-G-10 1200 1000 200 150 1 100 0.0016 0.33
Tab.1  
Fig.2  
series specimens Pn (kN) Vfrp = Vn,sVn,r (kN) increase at Pn δu (mm) δy (mm) δu/δy A (kN·mm) failure mode
K3.5S0 K3.5S0-R 99.13 6.00 336.38 S+
K3.5S0-C-5 187.68 89% 48.32 3.48 13.89 7856.83 F#
K3.5S0-C-10 188.50 44.69 90% 19.30 2585.52 S&
K3.5S0-G-5 149.63 25.25 51% 19.02 2.7 7.04 2147.21 S&
K3.5S0-G-10 118.73 9.80 20% 9.18 4.46 2.06 743.86 S&
K4.5S0 K4.5S0-R 85.45 7.06 330.58 S+
K4.5S0-C-5 186.06 118% 17.92 2211.61 F##
K4.5S0-C-5-2K 151.48 33.02 77% 44.57 8.35 5.34 5750.00 S*
K4.5S0-C-10 183.32 115% 22.82 2908.93 F##
K4.5S0-C-10-2K 136.31 25.43 60% 71.02 8483.99 S&
K3.5S20 K3.5S20-R 133.07 11.82 6.16 1.92 1054.43 S+
K3.5S20-C-5 221.58 67% 15.68 4.42 3.55 2349.27 F##
K3.5S20-C-10 194.12 30.52 46% 82.2 4.18 19.67 13639.93 S&
K2.5S20 K2.5S20-R 165.17 8.06 5.80 1.39 866.35 S+
K2.5S20-C-5 307.72 86% 13.52 2728.72 F##
K2.5S20-C-10 296.77 80% 18.47 8.37 2.21 3869.01 F##
K2.5S20-C-10-2K 351.17 93.00 113% 19.42 5.34 3.64 4869.06 S&
K2.5S20-G-5 298.93 66.88 81% 21.54 2.84 7.58 5186.36 S&
K2.5S20-G-10 289.83 62.33 75% 14.96 3.08 4.86 3084.86 S&
Tab.2  
Fig.3  
Fig.4  
Fig.5  
references literature current work
number MV SD COV number MV SD COV
ACI440.2R [80] 81 2.842 2.567 0.903 15 1.592 1.292 0.812
Triantafillou [49] 81 1.367 0.938 0.687 15 1.149 0.581 0.505
fib-TG 9.3 [81] 81 2.121 1.893 0.892 15 1.194 0.947 0.793
Khalifa et al. [62] 81 1.302 0.891 0.684 15 0.653 0.363 0.555
Khalifa and Nanni [53] 79 1.981 1.683 0.849 15 1.350 0.848 0.628
proposed equation 81 1.018 0.440 0.432 15 1.147 0.560 0.488
Tab.3  
specimens Vfrp (kN) εfrp,e ρfEf (GPa)
K2.5S0-C-5& 91.157 0.005257 0.5780
K2.5S0-C-10& 93.136 0.008056 0.3853
K2.5S0-G-5& 61.987 0.011793 0.1752
K2.5S0-G-10& 46.791 0.013353 0.1168
K2.5S15-C-10& 49.845 0.004312 0.3853
K2.5S15-C-10-2K& 47.179 0.002041 0.7707
K2.5S20-C-10-2K 92.998 0.004022 0.7707
K2.5S20-G-5 66.882 0.012725 0.1752
K2.5S20-G-10 62.327 0.017787 0.1168
K3.5S0-C-10 44.6865 0.003866 0.3853
K3.5S0-G-5 25.2525 0.004805 0.1752
K3.5S0-G-10 9.8005 0.002797 0.1168
K4.5S0-C-5-2K 33.0155 0.000952 1.1560
K4.5S0-C-10-2K 25.4315 0.001099 0.7707
K3.5S20-C-10 30.522 0.002640 0.3853
Tab.4  
Fig.6  
reference specimen εexp ACI 440.2R [80] Triantafillou [49] fib-TG 9.3 [81] Khalifa et al. [62] proposed Eq. (1)
εACI εexp/εACI εTri εexp/εTri εfib εexp/εfib εKha εexp/εKha εproposed εexp/εproposed
Araki et al. [82] CF045 0.0090 0.0040 2.2500 0.0107 0.8402 0.0060 1.5000 0.0107 0.8411 0.0192 0.4679
CF064 0.0096 0.0040 2.4000 0.0099 0.9707 0.0060 1.6000 0.0100 0.9643 0.0121 0.7917
AF060 0.0120 0.0040 3.0000 0.0109 1.1034 0.0060 2.0000 0.0202 0.5943 0.0219 0.5487
AF090 0.0110 0.0040 2.7500 0.0102 1.0789 0.0060 1.8333 0.0190 0.5776 0.0140 0.7839
AFI20 0.0140 0.0040 3.5000 0.0096 1.4648 0.0060 2.3333 0.0180 0.7792 0.0106 1.3240
Umezu et al. [87] C51 0.0069 0.0040 1.7250 0.0085 0.8082 0.0060 1.1500 0.0101 0.6824 0.0076 0.9086
CS2 0.0051 0.0040 1.2750 0.0101 0.5033 0.0060 0.8500 0.0118 0.4323 0.0136 0.3749
C53 0.0120 0.0040 3.0000 0.0097 1.2389 0.0060 2.0000 0.0113 1.0595 0.0111 1.0788
Funakawa et al. [86] S-2 0.0065 0.0040 1.6250 0.0093 0.6965 0.0060 1.0833 0.0100 0.6516 0.0097 0.6678
S-3 0.0047 0.0040 1.1750 0.0072 0.6516 0.0060 0.7833 0.0079 0.5936 0.0055 0.8519
S-4 0.0044 0.0040 1.1000 0.0054 0.8218 0.0056 0.7797 0.0061 0.7246 0.0039 1.1330
Uji [85] 3 0.0050 0.0040 1.2375 0.0048 1.0262 0.0038 1.3133 0.0040 1.2400 0.0035 1.3950
Teng et al. [15] UBF-R6 0.0139 0.0040 3.4750 0.0090 1.5523 0.0060 2.3167 0.0075 1.8627 0.0086 1.6191
BDF-R6 0.0107 0.0040 2.6750 0.0090 1.1950 0.0060 1.7833 0.0075 1.4339 0.0086 1.2464
UBF-R8 0.0138 0.0040 3.4500 0.0090 1.5412 0.0060 2.3000 0.0075 1.8493 0.0086 1.6075
BDF-R8 0.0109 0.0040 2.7250 0.0090 1.2173 0.0060 1.8167 0.0075 1.4607 0.0086 1.2697
Li and Leung [16] B1W 0.0094 0.0040 2.3425 0.0097 0.9678 0.0060 1.5617 0.0089 1.0485 0.0111 0.8436
B2W 0.0108 0.0040 2.7000 0.0097 1.1155 0.0060 1.8000 0.0089 1.2086 0.0111 0.9724
B3W 0.0115 0.0040 2.8750 0.0097 1.1878 0.0060 1.9167 0.0089 1.2869 0.0111 1.0354
B4W 0.0134 0.0040 3.3500 0.0097 1.3840 0.0060 2.2333 0.0089 1.4995 0.0111 1.2065
B5W 0.0123 0.0040 3.0750 0.0097 1.2704 0.0060 2.0500 0.0089 1.3764 0.0111 1.1075
B6W 0.0110 0.0040 2.7500 0.0097 1.1361 0.0060 1.8333 0.0089 1.2310 0.0111 0.9904
Bukhari et al. [55] C5 0.0026 0.0040 0.6620 0.0018 1.4978 0.0045 0.5920 0.0018 1.5131 0.0017 1.5317
Tab.5  
Equations MV STD COV
ACI 440.2R [80] 2.396 0.858 0.358
Triantafillou [49] 1.099 0.289 0.263
fib-TG 9.3 [81] 1.627 0.533 0.328
Khalifa et al. [62] 1.083 0.416 0.384
proposed Eq. (1) 1.033 0.345 0.334
Tab.6  
1 E Grande, M Imbimbo, A Rasulo. Effect of Transverse steel on the response of RC Beams strengthened in shear by FRP: Experimental study. Journal of Composites for Construction, 2009, 13( 5): 405– 414
https://doi.org/10.1061/(ASCE)1090-0268(2009)13:5(405
2 H K Lee, S H Cheong, S K Ha, C G Lee. Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Composite Structures, 2011, 93( 2): 911– 922
https://doi.org/10.1016/j.compstruct.2010.07.002
3 G Kim, J Sim, H Oh. Shear strength of strengthened RC beams with FRPs in shear. Construction & Building Materials, 2008, 22( 6): 1261– 1270
https://doi.org/10.1016/j.conbuildmat.2007.01.021
4 D J Damnoo, S Kumar. Experimental study on post repair performance of reinforced concrete beams rehabilitated and strengthened with CFRP sheets. Research Journal of Engineering and Technology, 2016, 7( 3): 103– 114
https://doi.org/10.5958/2321-581X.2016.00022.2
5 A Bousselham, O Chaallal. Mechanisms of shear resistance of concrete beams strengthened in shear with externally bonded FRP. Journal of Composites for Construction, 2008, 12( 5): 499– 512
https://doi.org/10.1061/(ASCE)1090-0268(2008)12:5(499
6 A Bousselham, O Chaallal. Effect of transverse steel and shear span on the performance of RC beams strengthened in shear with CFRP. Composites Part B: Engineering, 2006, 37( 1): 37– 46
https://doi.org/10.1016/j.compositesb.2005.05.012
7 F Bencardino, G Spadea, R N Swamy. The problem of shear in RC beams strengthened with CFRP laminates. Construction & Building Materials, 2007, 21( 11): 1997– 2006
https://doi.org/10.1016/j.conbuildmat.2006.05.056
8 A L Abass, Y R Hassan. Shear behavior of reinforced concrete wide beams strengthened with CFRP sheet without stirrups. Diyala Journal of Engineering Sciences, 2019, 12( 1): 80– 98
9 Z E A Benzeguir G El-Saikaly O Chaallal. Influence of size on the behavior of RC T-beams strengthened in shear with externally bonded CFRP. In: 9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2018). Paris: IIFC, 2018, 750– 755
10 J Jayaprakash, A A Abdul Samad, A Anvar Abbasovich, A A Abang Ali. Shear capacity of precracked and non-precracked reinforced concrete shear beams with externally bonded bi-directional CFRP strips. Construction & Building Materials, 2008, 22( 6): 1148– 1165
https://doi.org/10.1016/j.conbuildmat.2007.02.008
11 K Galal, A Mofidi. Shear strengthening of RC T-beams using mechanically anchored unbonded dry carbon fiber sheets. Journal of Performance of Constructed Facilities, 2010, 24( 1): 31– 39
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000067
12 A Carolin, B Täljsten. Experimental study of strengthening for increased shear bearing capacity. Journal of Composites for Construction, 2005, 9( 6): 488– 496
https://doi.org/10.1061/(ASCE)1090-0268(2005)9:6(488
13 O Chaallal, M J Nollet, D Perraton. Shear strengthening of RC beams by externally bonded side CFRP strips. Journal of Composites for Construction, 1998, 2( 2): 111– 113
https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(111
14 R H Haddad, C S Marji. Composite strips with U-shaped CFRP wrap anchor systems for strengthening reinforced concrete beams. International Journal of Civil Engineering, 2019, 17( 11): 1799– 1811
https://doi.org/10.1007/s40999-019-00447-w
15 J G Teng, G M Chen, J F Chen, O A Rosenboom, L Lam. Behavior of RC beams shear strengthened with bonded or unbonded FRP wraps. Journal of Composites for Construction, 2009, 13( 5): 394– 404
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000040
16 W Li, C K Y Leung. Shear span–depth ratio effect on behavior of RC beam shear strengthened with full-wrapping FRP strip. Journal of Composites for Construction, 2016, 20( 3): 04015067
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000627
17 A Bousselham, O Chaallal. Behavior of reinforced concrete T-beams strengthened in shear with carbon fiber-reinforced polymer-an experimental study. ACI Structural Journal, 2006, 103( 3): 339– 347
18 A Khalifa A Belarbi A Nanni. Shear performance of RC members strengthened with externally bonded FRP wraps. In: Proceedings of Twelfth World Conference on Earthquake, Auckland: Upper Hutt, N.Z., 2000
19 W Li, C K Y Leung. Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips. Composite Structures, 2017, 177 : 141– 157
https://doi.org/10.1016/j.compstruct.2017.06.059
20 Z E A Benzeguir, G El-Saikaly, O Chaallal. Size effect in RC T-beams strengthened in shear with externally bonded CFRP sheets: Experimental study. Journal of Composites for Construction, 2019, 23( 6): 04019048
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000975
21 Z E A Benzeguir, G El-Saikaly, O Chaallal. Size effect of RC T-beams strengthened in shear with externally bonded CFRP L-shaped laminates. Journal of Composites for Construction, 2020, 24( 4): 04020031
https://doi.org/10.1061/(ASCE)CC.1943-5614.0001045
22 A Li, C Diagana, Y Delmas. CRFP contribution to shear capacity of strengthened RC beams. Engineering Structures, 2001, 23( 10): 1212– 1220
https://doi.org/10.1016/S0141-0296(01)00035-9
23 A Li, C Diagana, Y Delmas. Shear strengthening effect by bonded composite fabrics on RC beams. Composites Part B: Engineering, 2002, 33( 3): 225– 239
https://doi.org/10.1016/S1359-8368(02)00003-3
24 A Khalifa, G Tumialan, A Nanni, A Belarbi. Shear strengthening of continuous RC beams using externally bonded CFRP sheets. In: Proceedings of 4th International Symposium on FRP for Reinforcement of Concrete Structures (FRPRCS4). Baltimore: American Concrete Institute, 1999, 995– 1008
25 S M Allam, T I Ebeido. Retrofitting of RC beams predamaged in shear using CFRP sheets. Alexandria Engineering Journal, 2003, 42( 1): 87– 101
26 B B Adhikary, H Mutsuyoshi. Behavior of concrete beams strengthened in shear with carbon-fiber sheets. Journal of Composites for Construction, 2004, 8( 3): 258– 264
https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(258
27 D Mostofinejad, S A Hosseini, S B Razavi. Influence of different bonding and wrapping techniques on performance of beams strengthened in shear using CFRP reinforcement. Construction & Building Materials, 2016, 116 : 310– 320
https://doi.org/10.1016/j.conbuildmat.2016.04.113
28 C K Y Leung, Z Chen, S Lee, M Ng, M Xu, J Tang. Effect of size on the failure of geometrically similar concrete beams strengthened in shear with FRP strips. Journal of Composites for Construction, 2007, 11( 5): 487– 496
https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(487
29 C Diagana, A Li, B Gedalia, Y Delmas. Shear strengthening effectiveness with CFF strips. Engineering Structures, 2003, 25( 4): 507– 516
https://doi.org/10.1016/S0141-0296(02)00208-0
30 D Mostofinejad, A Tabatabaei Kashani. Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams. Composites Part B: Engineering, 2013, 45( 1): 1704– 1713
https://doi.org/10.1016/j.compositesb.2012.09.081
31 K C Panda, S K Bhattacharyya, S V Barai. Effect of transverse steel on the performance of RC T-beams strengthened in shear zone with GFRP sheet. Construction & Building Materials, 2013, 41 : 79– 90
https://doi.org/10.1016/j.conbuildmat.2012.11.098
32 M C Sundarraja, S Rajamohan. Strengthening of RC beams in shear using GFRP inclined strips—An experimental study. Construction & Building Materials, 2009, 23( 2): 856– 864
https://doi.org/10.1016/j.conbuildmat.2008.04.008
33 A E D M Sharkawi E Etman. Effect of shear strengthening on the flexural behavior of RC simple beams strengthened externally with FRP laminates. In: Twelfth International Colloquium on Structural and Geotechnical Engineering. Cairo: Ain Shams University, 10– 12
34 M Rashidi H Takhtfirouzeh. An experimental study on shear and flexural strengthening of concrete beams using GFRP composites. 2018. arXiv: 1808.10008
35 R P Nanda, B Behera, S Majumder, H A Khan. RC beam strengthening by glass fibre reinforced polymer. International Journal of Engineering Technology Science and Research, 2018, 5 : 21– 26
36 J Dong, Q Wang, Z Guan. Structural behaviour of RC beams with external flexural and flexural–shear strengthening by FRP sheets. Composites Part B: Engineering, 2013, 44( 1): 604– 612
https://doi.org/10.1016/j.compositesb.2012.02.018
37 D Baggio, K Soudki, M Noël. Strengthening of shear critical RC beams with various FRP systems. Construction & Building Materials, 2014, 66 : 634– 644
https://doi.org/10.1016/j.conbuildmat.2014.05.097
38 N F Grace, G A Sayed, A K Soliman, K R Saleh. Strengthening reinforced concrete beams using fiber reinforced polymer (FRP) laminates. ACI Structural Journal—American Concrete Institute, 1999, 96( 5): 865– 874
39 S Ozden, H M Atalay, E Akpinar, H Erdogan, Y Z Vulaş. Shear strengthening of reinforced concrete T-beams with fully or partially bonded fibre-reinforced polymer composites. Structural Concrete, 2014, 15( 2): 229– 239
https://doi.org/10.1002/suco.201300031
40 M C Sundarraja, S Rajamohan, D Bhaskar. Shear strengthening of RC beams using GFRP vertical strips—An experimental study. Journal of Reinforced Plastics and Composites, 2008, 27( 14): 1477– 1495
https://doi.org/10.1177/0731684407081772
41 R P Nanda, B Behera. Experimental study of shear-deficient RC beam wrapped with GFRP. International Journal of Civil Engineering, 2020, 18( 6): 655– 664
https://doi.org/10.1007/s40999-020-00498-4
42 V Van Cao, S Q Pham. Comparison of CFRP and GFRP wraps on reducing seismic damage of deficient reinforced concrete structures. International Journal of Civil Engineering, 2019, 17( 11): 1667– 1681
https://doi.org/10.1007/s40999-019-00429-y
43 M Guadagnini, K Pilakoutas, P Waldron. Shear resistance of FRP RC beams: Experimental study. Journal of Composites for Construction, 2006, 10( 6): 464– 473
https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(464
44 M A A Saafan. Shear strengthening of reinforced concrete beams using GFRP wraps. Acta Polytechnica, 2006, 46(1): 24− 32
45 S K Panigrahi, A Deb, S K Bhattacharyya. Modes of failure in shear deficient RC T-beams strengthened with FRP. Journal of Composites for Construction, 2016, 20( 1): 04015029
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000586
46 R A Hawileh, H A Rasheed, J A Abdalla, A K Al-Tamimi. Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems. Materials & Design, 2014, 53 : 972– 982
https://doi.org/10.1016/j.matdes.2013.07.087
47 R S O Keskin, G Arslan, K Sengun. Influence of CFRP on the shear strength of RC and SFRC beams. Construction & Building Materials, 2017, 153 : 16– 24
https://doi.org/10.1016/j.conbuildmat.2017.06.170
48 T C Triantafillou, C P Antonopoulos. Design of concrete flexural members strengthened in shear with FRP. Journal of Composites for Construction, 2000, 4( 4): 198– 205
https://doi.org/10.1061/(ASCE)1090-0268(2000)4:4(198
49 T C Triantafillou. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 1998, 95 : 107– 115
50 C Pellegrino, C Modena. An experimentally based analytical model for the shear capacity of FRP-strengthened reinforced concrete beams. Mechanics of Composite Materials, 2008, 44( 3): 231– 244
https://doi.org/10.1007/s11029-008-9016-y
51 C Pellegrino, C Modena. Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement. Journal of Composites for Construction, 2002, 6( 2): 104– 111
https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(104
52 K C Panda, S K Bhattacharyya, S V Barai. Shear strengthening of RC T-beams with externally side bonded GFRP sheet. Journal of Reinforced Plastics and Composites, 2011, 30( 13): 1139– 1154
https://doi.org/10.1177/0731684411417202
53 A Khalifa, A Nanni. Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP composites. Construction & Building Materials, 2002, 16( 3): 135– 146
https://doi.org/10.1016/S0950-0618(02)00002-8
54 S Y Cao, J F Chen, J G Teng, Z Hao, J Chen. Debonding in RC beams shear strengthened with complete FRP wraps. Journal of Composites for Construction, 2005, 9( 5): 417– 428
https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(417
55 I A Bukhari, R L Vollum, S Ahmad, J Sagaseta. Shear strengthening of reinforced concrete beams with CFRP. Magazine of Concrete Research, 2010, 62( 1): 65– 77
https://doi.org/10.1680/macr.2008.62.1.65
56 C Pellegrino, C Modena. Fiber-reinforced polymer shear strengthening of reinforced concrete beams: Experimental study and analytical modeling. ACI Structural Journal, 2006, 103( 5): 720– 728
57 B B Adhikary, H Mutsuyoshi, M Ashraf. Effective shear strengthening of concrete beams using FRP sheets with bonded anchorage. Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 2003, 457– 466
https://doi.org/10.1142/9789812704863_0042
58 U Ianniruberto, M Imbimbo. Role of fiber reinforced plastic sheets in shear response of reinforced concrete beams: Experimental and analytical results. Journal of Composites for Construction, 2004, 8( 5): 415– 424
https://doi.org/10.1061/(ASCE)1090-0268(2004)8:5(415
59 D Mostofinejad, A Tabatabaei Kashani, A Hosseini. Design model for shear capacity of RC beams strengthened with two-side CFRP wraps based on effective FRP strain concept. European Journal of Environmental and Civil Engineering, 2016, 20( 2): 161– 179
https://doi.org/10.1080/19648189.2015.1021382
60 J F Chen J G Teng. Shear capacity of FRP-strengthened RC beams: FRP debonding. Construction & Building Materials, 2003, 17(1): 27− 41
61 J F Chen J G Teng. Shear capacity of fiber-reinforced polymer-strengthened reinforced concrete beams: Fiber reinforced polymer rupture. Journal of Structural Engineering, 2003, 129(5): 615− 625
62 A Khalifa, W J Gold, A Nanni, A A MI. Contribution of externally bonded FRP to shear capacity of RC flexural members. Journal of Composites for Construction, 1998, 2( 4): 195– 202
https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(195
63 A Mofidi, O Chaallal. Shear strengthening of RC beams with EB FRP: Influencing factors and conceptual debonding model. Journal of Composites for Construction, 2011, 15( 1): 62– 74
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000153
64 R Al-Rousan. Predicting the optimum shear capacity of reinforced concrete beams externally strengthened with CFRP composites. Procedia Manufacturing, 2020, 44 : 631– 638
https://doi.org/10.1016/j.promfg.2020.02.246
65 T Ozbakkaloglu, J C Lim, T Vincent. FRP-confined concrete in circular sections: Review and assessment of stress–strain models. Engineering Structures, 2013, 49 : 1068– 1088
https://doi.org/10.1016/j.engstruct.2012.06.010
66 M Z Naser, R A Hawileh, J Abdalla. Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review. Journal of Composites Science, 2021, 5( 1): 19– 33
https://doi.org/10.3390/jcs5010019
67 J L Lima, J A Barros. Reliability analysis of shear strengthening externally bonded FRP models. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2011, 164( 1): 43– 56
https://doi.org/10.1680/stbu.9.00042
68 C Pellegrino, M Vasic. Assessment of design procedures for the use of externally bonded FRP composites in shear strengthening of reinforced concrete beams. Composites Part B: Engineering, 2013, 45( 1): 727– 741
https://doi.org/10.1016/j.compositesb.2012.07.039
69 R Kotynia, E Oller, A Marí, M Kaszubska. Efficiency of shear strengthening of RC beams with externally bonded FRP materials—State-of-the-art in the experimental tests. Composite Structures, 2021, 267 : 113891
https://doi.org/10.1016/j.compstruct.2021.113891
70 T H K Kang, J Howell, S Kim, D J Lee. A state-of-the-art review on debonding failures of FRP laminates externally adhered to concrete. International Journal of Concrete Structures and Materials, 2012, 6( 2): 123– 134
https://doi.org/10.1007/s40069-012-0012-1
71 A Shomali, D Mostofinejad, M R Esfahani. Effective strain of CFRP in RC beams strengthened in shear with NSM reinforcements. Structures, 2020, 23 : 635– 645
https://doi.org/10.1016/j.istruc.2019.10.020
72 D Mostofinejad, S M Shameli. Externally bonded reinforcement in grooves (EBRIG) technique to postpone debonding of FRP sheets in strengthened concrete beams. Construction & Building Materials, 2013, 38 : 751– 758
https://doi.org/10.1016/j.conbuildmat.2012.09.030
73 D Mostofinejad, M R Esfahani, A Shomali. Experimental and numerical study of the RC beams shear-strengthened with NSM technique. Journal of Composite Materials, 2019, 53( 17): 2377– 2389
https://doi.org/10.1177/0021998319830777
74 R H Haddad, O A Almomani. Flexural performance and failure modes of NSM CFRP-strengthened concrete beams: A parametric study. International Journal of Civil Engineering, 2019, 17( 7): 935– 948
https://doi.org/10.1007/s40999-018-0342-8
75 J A O Barros, S J E Dias, J L T Lima. Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams. Cement and Concrete Composites, 2007, 29( 3): 203– 217
https://doi.org/10.1016/j.cemconcomp.2006.09.001
76 A Rizzo, L De Lorenzis. Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement. Construction & Building Materials, 2009, 23( 4): 1555– 1567
https://doi.org/10.1016/j.conbuildmat.2007.08.014
77 J A O Barros, S J E Dias. Near surface mounted CFRP laminates for shear strengthening of concrete beams. Cement and Concrete Composites, 2006, 28( 3): 276– 292
https://doi.org/10.1016/j.cemconcomp.2005.11.003
78 A Shomali, D Mostofinejad, M R Esfahani. Shear strengthening of RC beams using EBRIG CFRP strips: A comparative study. European Journal of Environmental and Civil Engineering, 2021, 25( 14): 2540– 2556
https://doi.org/10.1080/19648189.2019.1633413
79 J Barros S.Shear strengthening of reinforced concrete beams with laminate strips of CFRP Dias. In: Composite in Construction international Conference (CCC2003). Rende: University of Calabria, 2003
80 440.2R-17 ACI. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. Farmington Hills, MI: American Concrete Institute, 2017
81 FIB. Externally bonded FRP reinforcement for RC structures. International Federation for Structural Concrete (fib), 2001, 14 : 138
82 N Araki, Y Matsuzaki, K Nakano, T Kataka, H Fukuyama. Shear capacity of retrofitted RC members with continuous fibre sheets. Proceedings of 3rd Symposium on Non Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Tokyo: Japan Concrete Institute, 1997, 515– 522
83 T Zhao J Xie. Experimental study on the shear capacity of RC beam strengthened with CFRP sheets. Journal of Building Structures, 2000, 30(7): 21− 25 (in Chinese)
84 H Miyajima K Kosa K Tasaki S Matsumoto. Shear Strengthening of RC Beams Using Carbon Fiber Sheets & Its Resistance Mechanism. Fukuoka: Kyushu Institute of Technology, 2005
85 K Uji. Improving shear capacity of existing reinforced concrete members by applying carbon fiber sheets. Transactions of the Japan Concrete Institute, 1992, 14 : 253– 266
86 I Funakawa, K Shimono, T Watanabe, S Asada, S Vshijima. Experimental study on shear strengthening with continuous fiber reinforcement sheet and methyl methacrylate resin. In: Proceedings of 3rd Symposium on Non Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Tokyo: Japan Concrete Institute, 1997, 475– 482
87 K Umezu, M Fujita, H Nakai, K Tamaki. Shear behavior of RC beams with aramid fiber sheet. In: Proceedings of 3rd Symposium on Non Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3). Tokyo: Japan Concrete Institute, 1997, 491– 498
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed