Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (12): 1599-1620   https://doi.org/10.1007/s11709-022-0891-4
  本期目录
A novel finite element formulation for static bending analysis of functionally graded porous sandwich plates
Van Chinh NGUYEN1, Trung Thanh TRAN1, Trung NGUYEN-THOI2,3, Quoc-Hoa PHAM4()
1. Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi, Vietnam
2. Laboratory for Applied and Industrial Mathematics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
3. Faculty of Mechanical-Electrical and Computer Engineering, Van Lang University, Ho Chi Minh City, Vietnam
4. Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
 全文: PDF(8170 KB)   HTML
Abstract

This article aims to propose a finite element formulation based on Quasi-3D theory for the static bending analysis of functionally graded porous (FGP) sandwich plates. The FGP sandwich plates consist of three layers including the bottom skin of homogeneous metal, the top skin of fully ceramic and the FGP core layer with uneven porosity distribution. A quadrilateral (Q4) element with nine degrees of freedom (DOFs) per node is derived and employed in analyzing the static bending response of the plate under uniform and/or sinusoidally distributed loads. The accuracy of the present finite element formulation is verified by comparing the obtained numerical results with the published results in the literature. Then, some numerical examples are performed to examine the effects of the parameters including power-law index k and porosity coefficient ξ on the static bending response of rectangular FGP sandwich plates. In addition, a problem with a complicated L-shape model is conducted to illustrate the superiority of the proposed finite element method.

Key wordssandwich plates    functionally graded porous    static bending    Quasi-3D theory    Q4 element
收稿日期: 2022-05-10      出版日期: 2023-01-16
Corresponding Author(s): Quoc-Hoa PHAM   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(12): 1599-1620.
Van Chinh NGUYEN, Trung Thanh TRAN, Trung NGUYEN-THOI, Quoc-Hoa PHAM. A novel finite element formulation for static bending analysis of functionally graded porous sandwich plates. Front. Struct. Civ. Eng., 2022, 16(12): 1599-1620.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0891-4
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I12/1599
Fig.1  
material properties Young’s moduli (GPa) mass densities (kg/m3) Poisson’s ratio
alumina (Al2O3) (ceramic) Ec =380 ρc =3800 νc =0.3
aluminum (Al) (metal) Em =70 ρm =2707 νm =0.3
Tab.1  
Fig.2  
Fig.3  
k scheme displacement and stress mesh size Zenkour [40] Thai et al. [50]
12×12 14×14 16×16 18×18 20×20
0 2-1-2 w 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
σx (h/2 ) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1-1-1 w 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
σx (h/2 ) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
2-2-1 w 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
σx (h/2 ) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1-2-1 w 0.1983 0.1979 0.1976 0.1976 0.1976 0.1961 0.1961
σx (h/2 ) 2.0204 2.0136 2.0092 2.0092 2.0092 2.0499 1.9758
1 2-1-2 w 0.3097 0.3091 0.3087 0.3087 0.3087 0.3063 0.3064
σx (h/2 ) 1.4808 1.4758 1.4726 1.4726 1.4726 1.4959 1.4517
1-1-1 w 0.2952 0.2946 0.2943 0.2943 0.2943 0.2920 0.2920
σx (h/2 ) 1.4111 1.4063 1.4033 1.4033 1.4033 1.4262 1.3830
2-2-1 w 0.2836 0.283 0.2827 0.2827 0.2827 0.2809 0.2809
σx (h/2 ) 1.3027 1.2983 1.2954 1.2954 1.2954 1.3206 1.2775
1-2-1 w 0.2739 0.2734 0.2730 0.2730 0.2730 0.2709 0.2710
σx (h/2 ) 1.3076 1.3033 1.3004 1.3004 1.3004 1.3231 1.2810
2 2-1-2 w 0.3562 0.3555 0.3551 0.3551 0.3551 0.3523 0.3526
σx (h/2 ) 1.7070 1.7013 1.6976 1.6976 1.6976 1.7214 1.6750
1-1-1 w 0.3365 0.3359 0.3355 0.3355 0.3355 0.3329 0.3330
σx (h/2 ) 1.6130 1.6076 1.6041 1.6041 1.6041 1.6275 1.5824
2-2-1 w 0.3189 0.3183 0.3179 0.3179 0.3179 0.3162 0.3163
σx (h/2 ) 1.4521 1.4472 1.4439 1.4439 1.4439 1.4710 1.4253
1-2-1 w 0.3059 0.3053 0.3049 0.3049 0.3049 0.3026 0.3027
σx (h/2 ) 1.4646 1.4597 1.4565 1.4565 1.4565 1.4799 1.4358
10 2-1-2 w 0.4086 0.4078 0.4073 0.4073 0.4073 0.4041 0.3894
σx (h/2 ) 1.9573 1.9508 1.9465 1.9465 1.9465 1.9713 1.9216
1-1-1 w 0.3898 0.3890 0.3886 0.3886 0.3886 0.3855 0.3724
σx (h/2 ) 1.8710 1.8647 1.8606 1.8606 1.8606 1.8838 1.8375
2-2-1 w 0.3648 0.3641 0.3637 0.3637 0.3637 0.3622 0.3492
σx (h/2 ) 1.6450 1.6393 1.6357 1.6357 1.6357 1.6666 1.6160
1-2-1 w 0.3520 0.3514 0.3509 0.3509 0.3509 0.3482 0.3361
σx (h/2 ) 1.6899 1.6843 1.6806 1.6806 1.6806 1.7042 1.6587
Tab.2  
Fig.4  
power law-index w¯=Ec h312( 1 ν2)q0 a4w( a2, b 2) σ¯x=hq0aσx( a2, b2, h 2) τ¯x z= hq0aτx z(0, b2, 0)
present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70]
ceramic 0.001244 0.001237 28.3122 28.308 0.639017 0.638044
0.5 0.001883 0.001949 36.6621 36.652 0.665653 0.665576
1 0.002426 0.002540 42.8435 42.822 0.693451 0.692580
2 0.003065 0.003264 48.16327 49.154 0.666412 0.665902
5 0.003644 0.003870 54.4678 54.402 0.603652 0.603208
metal 0.006455 0.006883 28.3114 28.308 0.639017 0.638044
Tab.3  
power law-index w¯=10 Ec h3q0 a4w( a2, b 2) σ¯x=hq0aσx( a2, b2, h 2) τ¯x z= hq0aτx z(0, b2, 0)
present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70] present Vasiraja Nagaraj [70]
ceramic 0.4702 0.466 2.9075 2.872 0.5020 0.491
0.5 0.7048 0.712 3.7887 3.719 0.5119 0.501
1 0.9009 0.927 4.4909 4.345 0.5028 0.491
2 1.1344 1.193 5.2529 4.988 0.4657 0.466
5 1.3751 1.444 6.1746 5.521 0.4083 0.427
metal 2.4443 2.530 2.9075 2.872 0.4992 0.491
Tab.4  
Fig.5  
parameters k=0.5 k=1 k=2 k=4 k=10
max (w) 1.5769 1.7310 1.8768 1.9648 2.0067
σx (h/2 ) 4.7358 4.9465 5.0721 5.0709 5.0223
σz(h/2) –0.1026 –0.0448 –0.0221 –0.0698 –0.1711
τxz( 0) 0.5491 0.5105 0.4040 0.2722 0.2378
Tab.5  
Fig.6  
parameters k=0.5 k=1 k=2 k=4 k=10
max (w) 1.1924 1.2681 1.3406 1.3885 1.4152
σx (h/2 ) 2.6989 2.7840 2.8436 2.8592 2.8451
σz(h/2) 0.0083 0.0353 0.0483 0.0385 0.0103
τxz( 0) 0.5763 0.5054 0.3598 0.206 0.1549
Tab.6  
Fig.7  
parameters ξ =0.1 ξ =0.2 ξ =0.3 ξ =0.4 ξ =0.5
w 2.3609 2.5479 2.7840 3.0943 3.5251
σx (h/2 ) 2.4028 2.5142 2.6486 2.8175 3.0417
σz(h/2) –0.0106 0.0174 0.0573 0.1155 0.2046
τxz( 0) –0.0851 –0.0716 –0.0575 –0.0425 –0.0266
Tab.7  
Fig.8  
parameters ξ =0.1 ξ =0.2 ξ =0.3 ξ =0.4 ξ =0.5
w 2.2870 2.4194 2.5749 2.7611 2.9897
σx (h/2 ) 12.1422 12.5523 13.0116 13.5344 14.1424
σz(h/2) –0.2010 –0.1692 –0.1247 –0.0624 0.0257
τxz( 0) 0.6928 0.6543 0.6099 0.5580 0.4970
Tab.8  
Fig.9  
parameters value
0-1-0 1-1-1 1-2-1 1-8-1 2-2-1
w 6.1509 5.5924 5.6977 5.8287 6.0131
σx (h/2 ) 10.7513 9.4641 9.2555 9.4142 8.9882
σz(h/2) –0.6205 0.4326 0.2359 –0.2589 –0.072
τxz( 0) –0.0074 –0.0035 –0.0044 –0.0064 –0.2087
Tab.9  
Fig.10  
parameters scheme
0-1-0 1-1-1 1-2-1 1-8-1 2-2-1
w 5.0841 4.4759 4.5641 4.7329 4.8117
σx (h/2 ) 4.7835 4.2647 4.1825 4.2377 4.0886
σz(h/2) –0.3376 0.2420 0.1333 –0.1398 –0.0373
τxz( 0) –0.0065 –0.0036 –0.0044 –0.0058 –0.1977
Tab.10  
Fig.11  
ah scheme w σx (h/2 )
k=0.5 k=1.5 k=4.5 k=10.5 k=0.5 k=1.5 k=4.5 k=10.5
15 2-1-2 0.8784 0.9727 1.0567 1.0909 6.3092 6.5531 6.6895 6.7067
1-1-1 0.8068 0.9597 1.1057 1.1628 5.9845 6.4243 6.615 6.5761
2-2-1 0.9338 1.1028 1.2584 1.3349 6.3485 6.4606 6.194 6.0005
1-8-1 0.5541 0.8466 1.2147 1.4443 4.6512 5.8802 6.3579 6.2968
25 2-1-2 2.4161 2.6738 2.9015 2.9934 6.3056 6.5505 6.6869 6.7034
1-1-1 2.2182 2.6359 3.0298 3.1793 5.9786 6.4198 6.609 6.5663
2-2-1 2.5643 3.0147 3.3936 3.5356 6.343 6.4494 6.1549 5.9230
1-8-1 1.5180 2.3169 3.2765 3.689 4.6408 5.8674 6.3219 6.1527
45 2-1-2 7.7980 8.6274 9.3581 9.652 6.305 6.5509 6.6881 6.7047
1-1-1 7.1580 8.5027 9.7641 10.2371 5.9768 6.4193 6.6094 6.5661
2-2-1 8.2710 9.7063 10.8665 11.2379 6.3419 6.4476 6.1447 5.8988
1-8-1 4.8916 7.4630 10.4927 11.5449 4.6368 5.8629 6.3109 6.1010
65 2-1-2 16.2553 17.983 19.5043 20.1155 6.3049 6.5511 6.6886 6.7053
1-1-1 14.9205 17.7219 20.3464 21.3277 5.9764 6.4193 6.6098 6.5665
2-2-1 17.2388 20.2215 22.6094 23.3412 6.3418 6.4475 6.1431 5.8942
1-8-1 10.1931 15.5496 21.8323 23.8898 4.6358 5.862 6.3088 6.0899
Tab.11  
ah scheme w σx (h/2 )
k=0.5 k=2.5 k=5.5 k=9.5 k=0.5 k=2.5 k=5.5 k=9.5
5 1-1-2 0.0305 0.0325 0.0347 0.0374 2.4846 2.5974 2.7286 2.8848
1-1-1 0.0373 0.0406 0.0448 0.0504 2.6051 2.7543 2.9404 3.1836
2-2-1 0.0444 0.0498 0.0571 0.0678 2.6459 2.8007 3.0011 3.2800
1-6-1 0.0405 0.0445 0.0496 0.0564 2.6255 2.7572 2.9185 3.1251
30 1-1-2 0.8036 0.8552 0.9168 0.9921 2.4375 2.5461 2.6727 2.8238
1-1-1 0.9119 0.9948 1.1029 1.2510 2.4950 2.6311 2.8017 3.0271
2-2-1 0.9554 1.0553 1.1933 1.3994 2.4546 2.5721 2.7213 2.9263
1-6-1 0.9096 0.9885 1.0912 1.2321 2.4831 2.5921 2.724 2.8919
70 1-1-2 4.3360 4.6143 4.947 5.3542 2.4358 2.5443 2.6707 2.8215
1-1-1 4.9072 5.3533 5.9353 6.7345 2.4914 2.6270 2.7970 3.0214
2-2-1 5.1152 5.6463 6.3798 7.4766 2.4492 2.5654 2.7130 2.9153
1-6-1 4.8788 5.2999 5.8479 6.6002 2.479 2.5873 2.7183 2.8847
95 1-1-2 7.9786 8.4909 9.1032 9.8526 2.4357 2.5441 2.6705 2.8212
1-1-1 9.0272 9.848 10.9188 12.3892 2.4911 2.6266 2.7965 3.0208
2-2-1 9.405 10.3807 11.7283 13.7437 2.4486 2.5647 2.7121 2.9141
1-6-1 8.9720 9.7459 10.7531 12.1361 2.4786 2.5868 2.7177 2.8840
Tab.12  
Fig.12  
power law-index displacement and stress value
12 ×12 14 ×14 16 ×16 18 ×18 20 ×20
k=0.5 w 0.1563 0.1559 0.1556 0.1556 0.1556
σx (h/2 ) 1.5970 1.5965 1.5962 1.5962 1.5962
σz (h/2 ) –0.0161 –0.0157 –0.0154 –0.0154 –0.0154
τxz(0) –0.3376 –0.3371 –0.3367 –0.3367 –0.3367
k=1 w 0.1769 0.1765 0.1763 0.1763 0.1763
σx (h/2 ) 1.6900 1.6906 1.6901 1.6900 1.6900
σz (h/2 ) 0.0183 0.0180 0.0178 0.0177 0.0177
τxz(0) –0.2857 –0.2853 –0.2850 –0.2849 –0.2849
k=2 w 0.1990 0.1990 0.1991 0.1990 0.1990
σx (h/2 ) 1.7621 1.7617 1.7614 1.7613 1.7613
σz (h/2 ) 0.0432 0.0428 0.0424 0.0424 0.0424
τxz(0) –0.1859 –0.1855 –0.1851 –0.1850 –0.1850
k=5 w 0.2201 0.2199 0.2197 0.2196 0.2196
σx (h/2 ) 1.7743 1.7739 1.7735 1.7735 1.7735
σz (h/2 ) 0.0289 0.0285 0.0281 0.0280 0.0280
τxz(0) –0.0420 –0.0416 –0.0412 –0.0411 –0.0411
k=10 w 0.2275 0.2270 0.2268 0.2267 0.2267
σx (h/2 ) 1.7586 1.7581 1.7576 1.7576 1.7576
σz (h/2 ) –0.0021 –0.0015 –0.0011 –0.0010 –0.0010
τxz(0) –0.0128 –0.0123 –0.0120 –0.0119 –0.0119
Tab.13  
Fig.13  
porosity coefficient displacement and stress value
12 ×12 14 ×14 16 ×16 18 ×18 20 ×20
ξ =0.05 w 0.2876 0.2870 0.2865 0.2864 0.2864
σx (h/2 ) 0.7686 0.7680 0.7675 0.7674 0.7674
σz(h/2) –0.0397 –0.0392 –0.0389 –0.0388 –0.0388
τxz( 0) 0.0128 0.0122 0.0118 0.0117 0.0117
ξ =0.15 w 0.3130 0.3126 0.3121 0.3121 0.3121
σx (h/2 ) 0.7991 0.7987 0.7983 0.7982 0.7982
σz(h/2) –0.0350 –0.0345 –0.0342 –0.0341 –0.0341
τxz( 0) 0.0084 0.0079 0.0076 0.0075 0.0075
ξ =0.25 w 0.3470 0.3466 0.3461 0.3460 0.3460
σx (h/2 ) 0.8365 0.8360 0.8355 0.8354 0.8354
σz(h/2) –0.0272 –0.0267 –0.0263 –0.0263 –0.0263
τxz( 0) 0.3471 0.3465 0.3461 0.3460 0.3460
ξ =0.35 w 0.3945 0.3940 0.3936 0.3935 0.3935
σx (h/2 ) 0.8837 0.8832 0.8827 0.8827 0.8827
σz(h/2) –0.0141 –0.0137 –0.0133 –0.0132 –0.0132
τxz( 0) –0.0029 –0.0024 –0.0019 –0.0018 –0.0018
ξ =0.45 w 0.4673 0.4668 0.4664 0.4663 0.4663
σx (h/2 ) 0.9493 0.9489 0.9485 0.9485 0.9485
σz(h/2) 0.0114 0.0107 0.0101 0.0100 0.0100
τxz( 0) –0.0080 –0.0073 –0.0069 –0.0068 –0.0068
Tab.14  
Fig.14  
ah scheme w σx (h/2 )
k=0.5 k=1.5 k=5.5 k=8.5 k=0.5 k=1.5 k=5.5 k=8.5
15 2-1-2 0.1198 0.1323 0.1448 0.1472 1.9343 2.0125 2.0664 2.0719
1-1-1 0.1104 0.1308 0.1528 0.1568 1.8389 1.9771 2.0566 2.0576
2-2-1 0.1275 0.1507 0.179 0.1867 1.9545 2.0177 1.9894 1.9789
1-8-1 0.0774 0.1172 0.1789 0.2003 1.4551 1.8269 2.0487 2.0761
25 2-1-2 0.3216 0.3542 0.3860 0.3918 1.9076 1.9744 2.0157 2.0187
1-1-1 0.2962 0.3495 0.4040 0.4133 1.8193 1.9404 1.9979 1.9947
2-2-1 0.3404 0.3965 0.4501 0.4608 1.9218 1.9632 1.9058 1.8871
1-8-1 0.2054 0.3097 0.4466 0.4772 1.4480 1.8032 1.9732 1.9803
55 2-1-2 1.5322 1.6856 1.8328 1.8589 1.8937 1.9538 1.9872 1.9886
1-1-1 1.4107 1.6613 1.9112 1.9516 1.8093 1.9206 1.9642 1.9581
2-2-1 1.6179 1.8705 2.076 2.104 1.9044 1.9325 1.8578 1.8351
1-8-1 0.9731 1.4646 2.0519 2.1366 1.4450 1.7915 1.9327 1.9309
85 2-1-2 3.6507 4.0154 4.3645 4.4264 1.8915 1.9504 1.9825 1.9836
1-1-1 3.3611 3.9569 4.5485 4.6434 1.8077 1.9174 1.9585 1.9518
2-2-1 3.8534 4.4501 4.921 4.9794 1.9016 1.9274 1.8495 1.8261
1-8-1 2.3166 3.4856 4.861 5.0403 1.4445 1.7896 1.9259 1.9227
Tab.15  
ah scheme w σx (h/2 )
ξ =0.1 ξ =0.2 ξ =0.3 ξ =0.4 ξ =0.1 ξ =0.2 ξ =0.3 ξ =0.4
45 2 -1- 2 0.8525 0.9221 1.0107 1.1283 1.6144 1.6928 1.7883 1.9100
1 -1- 1 0.8607 0.9339 1.0283 1.1562 1.6015 1.6778 1.7713 1.8918
2 -2- 1 0.8907 0.9741 1.0868 1.2504 1.5934 1.6561 1.7322 1.8312
1 -8- 1 0.8891 0.9636 1.0607 1.1951 1.6648 1.7271 1.7999 1.8891
65 2 -1- 2 1.7718 1.9165 2.1006 2.3452 1.6121 1.6899 1.7847 1.9052
1 -1- 1 1.7881 1.9400 2.1361 2.4017 1.5991 1.6747 1.7673 1.8864
2 -2- 1 1.8469 2.0190 2.2516 2.5891 1.5908 1.6527 1.7274 1.8238
1 -8- 1 1.8442 1.9980 2.1987 2.4760 1.6628 1.7244 1.7963 1.8839
80 2 -1- 2 2.6806 2.8995 3.1781 3.5482 1.6114 1.689 1.7835 1.9036
1 -1- 1 2.7049 2.9347 3.2313 3.6332 1.5983 1.6737 1.766 1.8846
2 -2- 1 2.7922 3.0521 3.4032 3.9126 1.5900 1.6516 1.7259 1.8214
1 -8- 1 2.7885 3.0208 3.3237 3.7424 1.6621 1.7236 1.7951 1.8822
100 2 -1- 2 4.1849 4.5266 4.9615 5.5394 1.6108 1.6883 1.7827 1.9025
1 -1- 1 4.2225 4.5811 5.0441 5.6714 1.5978 1.673 1.7651 1.8834
2 -2- 1 4.3569 4.762 5.3093 6.1032 1.5894 1.6508 1.7248 1.8197
1 -8- 1 4.3514 4.7135 5.1858 5.8385 1.6617 1.7230 1.7943 1.8810
Tab.16  
Fig.15  
1 T P Vo, H T Thai, T K Nguyen, A Maheri, J Lee. Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory. Engineering Structures, 2014, 64: 12–22
https://doi.org/10.1016/j.engstruct.2014.01.029
2 M Asghari, M T Ahmadian, M H Kahrobaiyan, M Rahaeifard. On the size-dependent behavior of functionally graded micro-beams. Materials & Design, 2010, 31(5): 2324–2329
3 L C Trinh, T P Vo, A I Osofero, J Lee. Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach. Composite Structures, 2016, 156: 263–275
https://doi.org/10.1016/j.compstruct.2015.11.010
4 T P Vo, H T Thai, T K Nguyen, F Inam. Static and vibration analysis of functionally graded beams using refined shear deformation theory. Meccanica, 2014, 49(1): 155–168
https://doi.org/10.1007/s11012-013-9780-1
5 J Reddy. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 2000, 47(1–3): 663–684
6 D T Luat, D Van Thom, T T Thanh, P Van Minh, T Van Ke, P Van Vinh. Mechanical analysis of bi-functionally graded sandwich nanobeams. Advances in Nano Research, 2021, 11: 55–71
7 V H Nguyen, T K Nguyen, H T Thai, T P Vo. A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates. Composites. Part B, Engineering, 2014, 66: 233–246
https://doi.org/10.1016/j.compositesb.2014.05.012
8 A M Zenkour. Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 2006, 30(1): 67–84
https://doi.org/10.1016/j.apm.2005.03.009
9 S Li, S Zheng, D Chen. Porosity-dependent isogeometric analysis of bi-directional functionally graded plates. Thin-walled Structures, 2020, 156: 106999
https://doi.org/10.1016/j.tws.2020.106999
10 T T Tran, P B Le. Nonlocal dynamic response analysis of functionally graded porous L-shape nanoplates resting on elastic foundation using finite element formulation. Engineering with Computers, 2022, 1–17
https://doi.org/10.1007/s00366-022-01679-6
11 X ZhaoY LeeK M Liew. Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. Journal of Sound and Vibration, 2009, 319(3–5): 918–939
12 H Nguyen-Xuan, L V Tran, T Nguyen-Thoi, H Vu-Do. Analysis of functionally graded plates using an edge-based smoothed finite element method. Composite Structures, 2011, 93(11): 3019–3039
https://doi.org/10.1016/j.compstruct.2011.04.028
13 H N Nguyen, T N Canh, T T Thanh, T V Ke, V D Phan, D V Thom. Finite element modelling of a composite shell with shear connectors. Symmetry, 2019, 11(4): 527
https://doi.org/10.3390/sym11040527
14 A Karamanlı, T P Vo. Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Composites. Part B, Engineering, 2018, 144: 171–183
https://doi.org/10.1016/j.compositesb.2018.02.030
15 C H Thai, A M Zenkour, M Abdel Wahab, H Nguyen-Xuan. A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Composite Structures, 2016, 139: 77–95
https://doi.org/10.1016/j.compstruct.2015.11.066
16 T T Tran, Q H Pham, T Nguyen-Thoi. Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Defence Technology, 2021, 17(3): 971–986
https://doi.org/10.1016/j.dt.2020.06.001
17 T T Tran, P C Nguyen, Q H Pham. Vibration analysis of FGM plates in thermal environment resting on elastic foundation using ES-MITC3 element and prediction of ANN. Case Studies in Thermal Engineering, 2021, 24: 100852
https://doi.org/10.1016/j.csite.2021.100852
18 T T Tran, Q H Pham, T Nguyen-Thoi. Dynamic analysis of functionally graded porous plates resting on elastic foundation taking into mass subjected to moving loads using an edge-based smoothed finite element method. Shock and Vibration, 2020, 2020: 8853920
https://doi.org/10.1155/2020/8853920
19 Q H Pham, V K Tran, T T Tran, T Nguyen-Thoi, P C Nguyen, V D Pham. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation. Case Studies in Thermal Engineering, 2021, 26: 101170
https://doi.org/10.1016/j.csite.2021.101170
20 Q H Pham, T Thanh Tran, V Ke Tran, P C Nguyen, T Nguyen-Thoi. Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element. Alexandria Engineering Journal, 2022, 61(3): 1788–1802
https://doi.org/10.1016/j.aej.2021.06.082
21 Q H Pham, T T Tran, V K Tran, P C Nguyen, T Nguyen-Thoi, A M Zenkour. Bending and hygro-thermo-mechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation. Mechanics of Advanced Materials and Structures, 2021, 1–21
https://doi.org/10.1080/15376494.2021.1968549
22 T T Thanh, T Van Ke, P Q Hoa, N T Trung. An edge-based smoothed finite element for buckling analysis of functionally graded material variable-thickness plates. Vietnam Journal of Mechanics, 2021, 43: 221–235
https://doi.org/10.15625/0866-7136/15503
23 P C Nguyen, Q H Pham, T T Tran, T Nguyen-Thoi. Effects of partially supported elastic foundation on free vibration of FGP plates using ES-MITC3 elements. Ain Shams Engineering Journal, 2022, 13(3): 101615
https://doi.org/10.1016/j.asej.2021.10.010
24 T T Tran, Q H Pham, T Nguyen-Thoi. An edge-based smoothed finite element for free vibration analysis of functionally graded porous (FGP) plates on elastic foundation taking into mass (EFTIM). Mathematical Problems in Engineering, 2020, 2020: 8278743
https://doi.org/10.1155/2020/8278743
25 M Sobhy. A comprehensive study on FGM nanoplates embedded in an elastic medium. Composite Structures, 2015, 134: 966–980
https://doi.org/10.1016/j.compstruct.2015.08.102
26 F Tornabene. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering, 2009, 198(37–40): 2911–2935
27 J L Mantari. Refined and generalized hybrid type quasi-3D shear deformation theory for the bending analysis of functionally graded shells. Composites. Part B, Engineering, 2015, 83: 142–152
https://doi.org/10.1016/j.compositesb.2015.08.048
28 J Torabi, Y Kiani, M R Eslami. Linear thermal buckling analysis of truncated hybrid FGM conical shells. Composites. Part B, Engineering, 2013, 50: 265–272
https://doi.org/10.1016/j.compositesb.2013.02.025
29 A Rezaei, A Saidi. Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Composites. Part B, Engineering, 2016, 91: 361–370
https://doi.org/10.1016/j.compositesb.2015.12.050
30 A Rezaei, A Saidi. Exact solution for free vibration of thick rectangular plates made of porous materials. Composite Structures, 2015, 134: 1051–1060
https://doi.org/10.1016/j.compstruct.2015.08.125
31 J Zhao, F Xie, A Wang, C Shuai, J Tang, Q Wang. A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Composites. Part B, Engineering, 2019, 156: 406–424
https://doi.org/10.1016/j.compositesb.2018.08.115
32 J Zhao, F Xie, A Wang, C Shuai, J Tang, Q Wang. Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Composites. Part B, Engineering, 2019, 157: 219–238
https://doi.org/10.1016/j.compositesb.2018.08.087
33 Q Li, D Wu, X Chen, L Liu, Y Yu, W Gao. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. International Journal of Mechanical Sciences, 2018, 148: 596–610
https://doi.org/10.1016/j.ijmecsci.2018.09.020
34 S Sahmani, M M Aghdam, T Rabczuk. Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Composite Structures, 2018, 198: 51–62
https://doi.org/10.1016/j.compstruct.2018.05.031
35 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media. Engineering with Computers, 2022, 1–26
https://doi.org/10.1007/s00366-021-01586-2
36 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Engineering with Computers, 2022, 1–22
https://doi.org/10.1007/s00366-022-01633-6
37 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87: 104225
https://doi.org/10.1016/j.euromechsol.2021.104225
38 H Guo, H Zheng, X Zhuang. Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry. Applied Mathematical Modelling, 2019, 66: 695–727
https://doi.org/10.1016/j.apm.2018.10.006
39 H Guo, H Zheng. The linear analysis of thin shell problems using the numerical manifold method. Thin-walled Structures, 2018, 124: 366–383
https://doi.org/10.1016/j.tws.2017.12.027
40 A Zenkour. A comprehensive analysis of functionally graded sandwich plates: Part 1—Deflection and stresses. International Journal of Solids and Structures, 2005, 42(18–19): 5224–5242
41 A M Zenkour. The effect of transverse shear and normal deformations on the thermomechanical bending of functionally graded sandwich plates. International Journal of Applied Mechanics, 2009, 1(4): 667–707
https://doi.org/10.1142/S1758825109000368
42 A Zenkour, N Alghamdi. Bending analysis of functionally graded sandwich plates under the effect of mechanical and thermal loads. Mechanics of Advanced Materials and Structures, 2010, 17(6): 419–432
https://doi.org/10.1080/15376494.2010.483323
43 A Zenkour, M Sobhy. Thermal buckling of various types of FGM sandwich plates. Composite Structures, 2010, 93(1): 93–102
https://doi.org/10.1016/j.compstruct.2010.06.012
44 A Zenkour, N Alghamdi. Thermomechanical bending response of functionally graded nonsymmetric sandwich plates. Journal of Sandwich Structures & Materials, 2010, 12(1): 7–46
https://doi.org/10.1177/1099636209102264
45 A M Zenkour. Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory. Journal of Sandwich Structures & Materials, 2013, 15(6): 629–656
https://doi.org/10.1177/1099636213498886
46 A A Daikh, A M Zenkour. Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Materials Research Express, 2019, 6(11): 115707
https://doi.org/10.1088/2053-1591/ab48a9
47 A Zenkour. A comprehensive analysis of functionally graded sandwich plates: Part 2––Buckling and free vibration. International Journal of Solids and Structures, 2005, 42(18-19): 5243–5258
https://doi.org/10.1016/j.ijsolstr.2005.02.016
48 A A Daikh, A M Zenkour. Effect of porosity on the bending analysis of various functionally graded sandwich plates. Materials Research Express, 2019, 6(6): 065703
https://doi.org/10.1088/2053-1591/ab0971
49 A M Zenkour. A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities. Composite Structures, 2018, 201: 38–48
https://doi.org/10.1016/j.compstruct.2018.05.147
50 H T Thai, T K Nguyen, T P Vo, J Lee. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics. A, Solids, 2014, 45: 211–225
https://doi.org/10.1016/j.euromechsol.2013.12.008
51 Ahmed Houari M Sid, A Tounsi, Bég O Anwar. Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. International Journal of Mechanical Sciences, 2013, 76: 102–111
https://doi.org/10.1016/j.ijmecsci.2013.09.004
52 T K Nguyen, V H Nguyen, T Chau-Dinh, T P Vo, H Nguyen-Xuan. Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements. Composites. Part B, Engineering, 2016, 107: 162–173
https://doi.org/10.1016/j.compositesb.2016.09.058
53 Q H Pham, P C Nguyen, T T Tran, T Nguyen-Thoi. Free vibration analysis of nanoplates with auxetic honeycomb core using a new third-order finite element method and nonlocal elasticity theory. Engineering with Computers, 2021, 1–19
https://doi.org/10.1007/s00366-021-01531-3
54 D Li, Z Deng, H Xiao, L Zhu. Thermomechanical bending analysis of functionally graded sandwich plates with both functionally graded face sheets and functionally graded cores. Mechanics of Advanced Materials and Structures, 2018, 25(3): 179–191
https://doi.org/10.1080/15376494.2016.1255814
55 D Li, Z Deng, H Xiao, P Jin. Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core. Thin-walled Structures, 2018, 122: 8–16
https://doi.org/10.1016/j.tws.2017.09.033
56 A Tounsi, M S A Houari, S Benyoucef, E A Adda Bedia. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerospace Science and Technology, 2013, 24(1): 209–220
https://doi.org/10.1016/j.ast.2011.11.009
57 Y Tlidji, T H Daouadji, L Hadji, A Tounsi, E A A Bedia. Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading. Journal of Thermal Stresses, 2014, 37(7): 852–869
https://doi.org/10.1080/01495739.2014.912917
58 F Z Zaoui, D Ouinas, A Tounsi. New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Composites. Part B, Engineering, 2019, 159: 231–247
https://doi.org/10.1016/j.compositesb.2018.09.051
59 A Neves, A Ferreira, E Carrera, M Cinefra, C Roque, R Jorge, C M Soares. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites. Part B, Engineering, 2013, 44(1): 657–674
https://doi.org/10.1016/j.compositesb.2012.01.089
60 S A Farzam-Rad, B Hassani, A Karamodin. Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface. Composites. Part B, Engineering, 2017, 108: 174–189
https://doi.org/10.1016/j.compositesb.2016.09.029
61 Z Vafakhah, B Navayi Neya. An exact three dimensional solution for bending of thick rectangular FGM plate. Composites. Part B, Engineering, 2019, 156: 72–87
https://doi.org/10.1016/j.compositesb.2018.08.036
62 T P Vo, H T Thai, T K Nguyen, F Inam, J Lee. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures, 2015, 119: 1–12
https://doi.org/10.1016/j.compstruct.2014.08.006
63 J N Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Boca Raton: CRC press, 2003
64 M Sobhy. An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment. International Journal of Mechanical Sciences, 2016, 110: 62–77
https://doi.org/10.1016/j.ijmecsci.2016.03.003
65 M Touratier. An efficient standard plate theory. International Journal of Engineering Science, 1991, 29(8): 901–916
https://doi.org/10.1016/0020-7225(91)90165-Y
66 K P Soldatos. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 1992, 94(3–4): 195–220
67 M Karama, K Afaq, S Mistou. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of Solids and Structures, 2003, 40(6): 1525–1546
https://doi.org/10.1016/S0020-7683(02)00647-9
68 A Mahi, E A Adda Bedia, A Tounsi. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, 2015, 39(9): 2489–2508
https://doi.org/10.1016/j.apm.2014.10.045
69 Q H Pham, P C Nguyen, T Thanh Tran. Dynamic response of porous functionally graded sandwich nanoplates using nonlocal higher-order isogeometric analysis. Composite Structures, 2022, 290: 115565
https://doi.org/10.1016/j.compstruct.2022.115565
70 N Vasiraja, P Nagaraj. The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method. Bulletin of the Polish Academy of Sciences. Technical Sciences, 2019, 67(4): 827–838
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed