Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2022, Vol. 16 Issue (12): 1501-1514   https://doi.org/10.1007/s11709-022-0893-2
  本期目录
Stable expression and control parameters in the numerical simulation of unsaturated flow
Zhiyuan ZHANG, Xu LI, Yongkang WU(), Xiaokang LI
Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(36990 KB)   HTML
Abstract

The Richards’ equation describes the flow phenomenon in unsaturated porous media and is essential to hydrology and environmental science. This study evaluated the numerical stability of two different forms of the Richards’ equation. Sensitivity analyses were performed to investigate the control parameters of the equation. The results show that the h-form Richards’ equation has better applicability for calculating variable saturation flows than the θ-form Richards’ equation. For the h-form Richards’ equation, the hydraulic conductivity of the soil in the low-suction range and the specific moisture capacity in the high-suction range primarily influenced the solution. In addition, sensitivity analyses indicated that the saturated hydraulic conductivity, initial condition, and air-entry pressure have a higher sensitivity to the simulation results than the saturated water content, rainfall intensity, and decline rate of hydraulic conductivity. Moreover, their correctness needs to be guaranteed first in numerical simulations. The research findings can provide a helpful reference for improving the reliability of numerical simulations of unsaturated flows.

Key wordsRichards’ equation    sensitivity analysis    unsaturated soil    hydraulic diffusivity    seepage simulation
收稿日期: 2022-05-03      出版日期: 2023-01-16
Corresponding Author(s): Yongkang WU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2022, 16(12): 1501-1514.
Zhiyuan ZHANG, Xu LI, Yongkang WU, Xiaokang LI. Stable expression and control parameters in the numerical simulation of unsaturated flow. Front. Struct. Civ. Eng., 2022, 16(12): 1501-1514.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-022-0893-2
https://academic.hep.com.cn/fsce/CN/Y2022/V16/I12/1501
Fig.1  
test No. Ds (m2/s)a) D0 (m2/s)b) variablec) equation initial stated) boundary condition
H1e) 4e–4 4e–9 h-form ψ0 = 27000 kPa ψ = 0 kPa
H2 4e–5 4e–9 C
H3 4e–3 4e–9
H4 4e–4 4e–10
H5 4e–4 4e–8
H6 4e–5 4e–9 k
H7 4e–3 4e–9
H8 4e–4 4e–10
H9 4e–4 4e–8
T1f) 4e–4 4e–9 θ-form θ0 = 0.110 θ = 0.322
T2 4e–5 4e–9 D
T3 4e–3 4e–9
T4 4e–4 4e–10
T5 4e–4 4e–8
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
test No. D¯ ( m2/s) Q (m) numerical results L (m)
T1 8.66e–5 0.038 0.039
T2 5.97e–5 0.032 0.031
T3 1.82e–4 0.055 0.056
T4 8.63e–5 0.038 0.039
T5 8.68e–5 0.038 0.039
Tab.2  
Fig.11  
rain mode rainfall intensity benchmark value v (mm/d) rainfall intensity disturbance value v (mm/d) time
long-term light rain 5 1, 3, 7, 9 30 d
short-term heavy rain 173 35, 104, 242, 311 12 h
Tab.3  
soil type parameter unit benchmark value disturbance value range
clay θs 0.5 0.42, 0.46, 0.54, 0.58 0.4−0.6
ks m/s 3e−9 2e−10, 8e−10, 1e−8, 5e−8 1e−10−1e−7
ψ0 kPa 1000 158, 398, 2512, 6310 100−10000
ψb kPa 316 126, 200, 501, 794 100−1000
n¯ 1.80 1.24, 1.52, 2.08, 2.36 1.1−2.5
silt θs 0.45 0.37, 0.41, 0.49, 0.53 0.35−0.55
ks m/s 3e−7 2e−8, 8e−8, 1e−6, 5e−6 1e−8−1e−5
ψ0 kPa 100 16, 40, 251, 631 10−1000
ψb kPa 32 13, 20, 50, 79 10−100
n¯ 3.00 2.20, 2.60, 3.40, 3.80 2−4
sand θs 0.4 0.32, 0.36, 0.44, 0.48 0.3−0.5
ks m/s 3e−5 2e−6, 8e−6, 1e−4, 5e−4 1e−6−1e−3
ψ0 kPa 6 3, 4, 10, 16 1−20
ψb kPa 4.5 2.4, 3.2, 6.2, 8.5 2−10
n¯ 6.25 4.45, 5.35, 7.15, 8.05 4−8.5
Tab.4  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
data type saturated water content θs saturated hydraulic conductivity ks initial condition ψ0 air-entry value ψb hydraulic conductivity decline rate n¯ rainfall intensity v
geological prospecting value 0.43 4.0e−6 m/s 6 m 50 kPa 2.30 38 mm/h
adjusted value 0.47 1.6e−5 m/s 9 m 79 kPa 2.70 43 mm/h
Tab.5  
Fig.16  
Fig.17  
1 J S R Park, S W Cheung, T Mai. Multiscale simulations for multi-continuum Richards equations. Journal of Computational and Applied Mathematics, 2021, 397: 113648
https://doi.org/10.1016/j.cam.2021.113648
2 L A Richards. Capillary conduction of liquids through porous mediums. Physics, 1931, 1(5): 318–333
https://doi.org/10.1063/1.1745010
3 M W Farthing, F L Ogden. Numerical solution of Richards’ equation: A review of advances and challenges. Soil Science Society of America Journal, 2017, 81(6): 1257–1269
https://doi.org/10.2136/sssaj2017.02.0058
4 Z Li, I Özgen-Xian, F Z Maina. A mass-conservative predictor-corrector solution to the 1D Richards equation with adaptive time control. Journal of Hydrology (Amsterdam), 2021, 592: 125809
https://doi.org/10.1016/j.jhydrol.2020.125809
5 C Paniconi, M Putti. Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resources Research, 2015, 51(9): 7090–7129
https://doi.org/10.1002/2015WR017780
6 A Klute. The determination of the hydraulic conductivity and diffusivity of unsaturated soils1. Soil Science, 1972, 113(4): 264–276
https://doi.org/10.1097/00010694-197204000-00006
7 X Li, L M Zhang, D G Fredlund. Wetting front advancing column test for measuring unsaturated hydraulic conductivity. Canadian Geotechnical Journal, 2009, 46(12): 1431–1445
https://doi.org/10.1139/T09-072
8 Q Liu, P Xi, J Miao, X Li, K Wang. Applicability of wetting front advancing method in the sand to silty clay soils. Soil and Foundation, 2020, 60(5): 1215–1225
https://doi.org/10.1016/j.sandf.2020.07.002
9 D Ma, Q Wang, M Shao. Analytical method for estimating soil hydraulic parameters from horizontal absorption. Soil Science Society of America Journal, 2009, 73(3): 727–736
https://doi.org/10.2136/sssaj2008.0050
10 W Su, Y J Cui, P J Qin, F Zhang, W M Ye, N Conil. Application of instantaneous profile method to determine the hydraulic conductivity of unsaturated natural stiff clay. Engineering Geology, 2018, 243: 111–117
https://doi.org/10.1016/j.enggeo.2018.06.012
11 X Li, Z Zhang, L Zhang, L Zhang, L Wu. Combining two methods for the measurement of hydraulic conductivity over a wide suction range. Computers and Geotechnics, 2021, 135: 104178
https://doi.org/10.1016/j.compgeo.2021.104178
12 R R Bruce, A Klute. The measurement of soil moisture diffusivity1. Soil Science Society of America Journal, 1956, 20(4): 458
https://doi.org/10.2136/sssaj1956.03615995002000040004x
13 H J Morel-Seytoux, J Khanji. Prediction of imbibition in a horizontal column. Soil Science Society of America Journal, 1975, 39(4): 613–617
https://doi.org/10.2136/sssaj1975.03615995003900040015x
14 L NingW J Likos. Unsaturated Soil Mechanics. New Jerse: Wiley, 2004
15 R H BrooksA T Corey. Hydraulic Properties of Porous Media. Fort Collins: Hydrol Pap, 1964
16 M T van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892–898
https://doi.org/10.2136/sssaj1980.03615995004400050002x
17 D G Fredlund, A Xing. Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 1994, 31(4): 521–532
https://doi.org/10.1139/t94-061
18 Y Zha, J Yang, L Shi, X Song. Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based Richards equation. Vadose Zone Journal, 2013, 12(2): vzj2012.0109
https://doi.org/10.2136/vzj2012.0109
19 B Tai, Z Yue, S Qi, P Wang. Experimental and numerical investigation on thermal-moisture-mechanical behaviors on a new anti-frost cutting bed of high-speed railway in deep seasonally frozen ground regions under extreme climate. Computers and Geotechnics, 2021, 136: 104251
https://doi.org/10.1016/j.compgeo.2021.104251
20 X Li, X Li, Y Wu, L Wu, Z Yue. Selection criteria of mesh size and time step in fem analysis of highly nonlinear unsaturated seepage process. Computers and Geotechnics, 2022, 146: 104712
https://doi.org/10.1016/j.compgeo.2022.104712
21 B Tai, Q Wu, Z Zhang, X Xu. Study on thermal performance of novel asymmetric crushed-rock-based embankment on the qinghai-tibet railway in permafrost region. International Journal of Thermal Sciences, 2020, 152: 106333
https://doi.org/10.1016/j.ijthermalsci.2020.106333
22 K J Fidkowski, D L Darmofal. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA Journal, 2011, 49(4): 673–694
https://doi.org/10.2514/1.J050073
23 P Hénon, P Ramet, J Roman. Pastix: A high-performance parallel direct solver for sparse symmetric positive definite systems. Parallel Computing, 2002, 28(2): 301–321
https://doi.org/10.1016/S0167-8191(01)00141-7
24 X Li. An Overview of SuperLU. New York: ACM Transactions on Mathematical Software (TOMS), 2005
25 F List, F A Radu. A study on iterative methods for solving Richards’ equation. Computational Geosciences, 2015, 20(2): 1–13
26 J S Pettway, J H Schmidt, A K Stagg. Adaptive meshing in a mixed regime hydrologic simulation model. Computational Geosciences, 2010, 14(4): 665–674
https://doi.org/10.1007/s10596-010-9179-1
27 I S Pop, F Radu, P Knabner. Mixed finite elements for the Richards’ equation: Linearization procedure. Journal of Computational and Applied Mathematics, 2004, 168(1−2): 365–373
https://doi.org/10.1016/j.cam.2003.04.008
28 P Solin, M Kuraz. Solving the nonstationary Richards equation with adaptive HP-FEM. Advances in Water Resources, 2011, 34(9): 1062–1081
https://doi.org/10.1016/j.advwatres.2011.04.020
29 A R Valdez, B M Rocha, G Chapiro, R Weber dos Santos. Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media. Journal of Petroleum Science Engineering, 2020, 192: 107297
https://doi.org/10.1016/j.petrol.2020.107297
30 A Sieber, S Uhlenbrook. Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology (Amsterdam), 2005, 310(1−4): 216–235
https://doi.org/10.1016/j.jhydrol.2005.01.004
31 S Berg, E Unsal, H Dijk. Sensitivity and uncertainty analysis for parameterization of multiphase flow models. Transport in Porous Media, 2021, 140(1): 27–57
https://doi.org/10.1007/s11242-021-01576-4
32 M Crosetto, S Tarantola, A Saltelli. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agriculture, Ecosystems & Environment, 2000, 81(1): 71–79
https://doi.org/10.1016/S0167-8809(00)00169-9
33 M D Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161–174
https://doi.org/10.1080/00401706.1991.10484804
34 F Campolongo, S Tarantola, A Saltelli. Tackling quantitatively large dimensionality problems. Computer Physics Communications, 1999, 117(1−2): 75–85
https://doi.org/10.1016/S0010-4655(98)00165-9
35 J D Herman, J B Kollat, P M Reed, T Wagener. Technical note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrology and Earth System Sciences, 2013, 17(7): 2893–2903
https://doi.org/10.5194/hess-17-2893-2013
36 M Pang, R Xu, Z Hu, J Wang, Y Wang. Uncertainty and sensitivity analysis of input conditions in a large shallow lake based on the latin hypercube sampling and morris methods. Water (Basel), 2021, 13(13): 1861
https://doi.org/10.3390/w13131861
37 D M King, B J C Perera. Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield—A case study. Journal of Hydrology (Amsterdam), 2013, 477: 17–32
https://doi.org/10.1016/j.jhydrol.2012.10.017
38 J Ren, W Zhang, J Yang. Morris sensitivity analysis for hydrothermal coupling parameters of embankment dam: A case study. Mathematical Problems in Engineering, 2019, 2019: 1–11
https://doi.org/10.1155/2019/2196578
39 X Yi, R Zou, H Guo. Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake. Ecological Modelling, 2016, 327: 74–84
https://doi.org/10.1016/j.ecolmodel.2016.01.005
40 J Niessner, R Helmig, H Jakobs, J E Roberts. Interface condition and linearization schemes in the newton iterations for two-phase flow in heterogeneous porous media. Advances in Water Resources, 2005, 28(7): 671–687
https://doi.org/10.1016/j.advwatres.2005.01.006
41 Y Mualem. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 1976, 12(3): 513–522
https://doi.org/10.1029/WR012i003p00513
42 J Crank. The Mathematics of Diffusion. New York: Oxford University Press, 1979
43 F T Tracy. Clean two- and three-dimensional analytical solutions of Richards’ equation for testing numerical solvers. Water Resources Research, 2006, 42(8): W08503
https://doi.org/10.1029/2005WR004638
44 R E Gibson. A note on the constant head test to measure soil permeability in situ. Geotechnique, 1966, 16(3): 256–259
https://doi.org/10.1680/geot.1966.16.3.256
45 R E Gibson. An extension to the theory of the constant head in situ permeability test. Geotechnique, 1970, 20(2): 193–197
https://doi.org/10.1680/geot.1970.20.2.193
46 W Powrie. Soil Mechanics: Concepts and Applications. 2nd ed. Oxford: Taylor & Francis, 2013, 22(3): 381–382
47 A Saltelli, I M Sobol. About the use of rank transformation in sensitivity analysis of model output. Reliability Engineering & System Safety, 1995, 50(3): 225–239
https://doi.org/10.1016/0951-8320(95)00099-2
48 J Zádor, I G Zsély, T Turányi. Local and global uncertainty analysis of complex chemical kinetic systems. Reliability Engineering & System Safety, 2006, 91(10-11): 1232–1240
https://doi.org/10.1016/j.ress.2005.11.020
49 A Francos, F J Elorza, F Bouraoui, G Bidoglio, L Galbiati. Sensitivity analysis of distributed environmental simulation models: Understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering & System Safety, 2003, 79(2): 205–218
https://doi.org/10.1016/S0951-8320(02)00231-4
50 T F M Chui, D L Freyberg. Implementing hydrologic boundary conditions in a multiphysics model. Journal of Hydrologic Engineering, 2009, 14(12): 1374–1377
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000113
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed