Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2023, Vol. 17 Issue (8): 1145-1162   https://doi.org/10.1007/s11709-023-0945-2
  本期目录
Parametric study on seismic performance of self-centering reinforced concrete column with bottom-placed rubber layer
Yangchao RU1, Liusheng HE1,2(), Huanjun JIANG1,2
1. Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(18282 KB)   HTML
Abstract

To realize seismic-resilient reinforced concrete (RC) moment-resisting frame structures, a novel self-centering RC column with a rubber layer placed at the bottom (SRRC column) is proposed herein. For the column, the longitudinal reinforcement dissipates seismic energy, the rubber layer allows the rocking of the column, and the unbonded prestressed tendon enables self-centering capacity. A refined finite element model of the SRRC column is developed, the effectiveness of which is validated based on experimental results. Results show that the SRRC column exhibits stable energy dissipation capacity and no strength degradation; additionally, it can significantly reduce permanent residual deformation and mitigate damage to concrete. Extensive parametric studies pertaining to SRRC columns have been conducted to investigate the critical factors affecting their seismic performance.

Key wordsseismic resilience    self-centering    rubber layer    flag-shaped hysteresis loop    parametric study
收稿日期: 2022-08-19      出版日期: 2023-11-16
Corresponding Author(s): Liusheng HE   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2023, 17(8): 1145-1162.
Yangchao RU, Liusheng HE, Huanjun JIANG. Parametric study on seismic performance of self-centering reinforced concrete column with bottom-placed rubber layer. Front. Struct. Civ. Eng., 2023, 17(8): 1145-1162.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-023-0945-2
https://academic.hep.com.cn/fsce/CN/Y2023/V17/I8/1145
Fig.1  
Fig.2  
Fig.3  
Fig.4  
specimen concrete 16 6 22 HA (° ) n
f c1 (MPa) f c2 (MPa) f y1 (MPa) f u1 (MPa) f yv (MPa) f uv (MPa) f y2 (MPa) f u2 (MPa)
RRC-1 31.4 30.0 380 571 598 644 372 574 65 0.109
RRC-2 31.4 30.0 380 571 598 644 372 574 65 0.153
RRC-3 31.4 30.0 380 571 598 644 372 574 65 0.109
Tab.1  
Fig.5  
Fig.6  
Fig.7  
model axial compression ratio rubber material
N (kN) n1 Npe (kN) n2 n HA (° ) Er0 (MPa) K (MPa) C10 C01 D1 (MPa−1)
RRC-0 395.80 0.150 0.150 65 6.34 1.21 × 103 0.845 0.211 0.0017
SRRC-0 395.80 0.150 4 × 50 = 200 0.076 0.226 65 6.34 1.21 × 103 0.845 0.211 0.0017
Tab.2  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
model ρl (%) fy1 (MPa) t (mm) HA (° ) P0 (kN) n parameter
S0 1.0 380 40 65 50 0.226 reference model
S1 0.5 380 40 65 50 0.226 ρl
S2 1.5 380 40 65 50 0.226
S3 2.0 380 40 65 50 0.226
S4 1.5 200 40 65 50 0.226 fy1
S5 1.5 300 40 65 50 0.226
S6 1.5 500 40 65 50 0.226
S7 1.5 380 20 65 50 0.226 t
S8 1.5 380 30 65 50 0.226
S9 1.5 380 50 65 50 0.226
S10 1.5 380 40 45 50 0.226 HA
S11 1.5 380 40 55 50 0.226
S12 1.5 380 40 75 50 0.226
S13 1.5 380 40 65 10 0.226 P0
S14 1.5 380 40 65 30 0.226
S15 1.5 380 40 65 70 0.226
S16 1.5 380 40 65 50 0.176 n
S17 1.5 380 40 65 50 0.376
S18 1.5 380 40 65 50 0.576
Tab.3  
model N (kN) n1 Npe (kN) n2 n
S0 395.80 0.150 200 0.076 0.226
S1 395.80 0.150 200 0.076 0.226
S2 395.80 0.150 200 0.076 0.226
S3 395.80 0.150 200 0.076 0.226
S4 395.80 0.150 200 0.076 0.226
S5 395.80 0.150 200 0.076 0.226
S6 395.80 0.150 200 0.076 0.226
S7 395.80 0.150 200 0.076 0.226
S8 395.80 0.150 200 0.076 0.226
S9 395.80 0.150 200 0.076 0.226
S10 395.80 0.150 200 0.076 0.226
S11 395.80 0.150 200 0.076 0.226
S12 395.80 0.150 200 0.076 0.226
S13 556.76 0.211 40 0.015 0.226
S14 474.96 0.180 120 0.046 0.226
S15 316.64 0.120 280 0.106 0.226
S16 263.87 0.100 200 0.076 0.176
S17 791.60 0.300 200 0.076 0.376
S18 1319.33 0.500 200 0.076 0.576
Tab.4  
HA (° ) Er0 (MPa) K (MPa) C10 C01 D1 (MPa−1)
45 1.85 1.02 × 103 0.247 0.062 0.0019
55 3.77 1.09 × 103 0.503 0.126 0.0018
65 6.34 1.21 × 103 0.845 0.211 0.0017
75 8.34 1.33 × 103 1.112 0.278 0.0015
Tab.5  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
1 M BruneauG A MacRae. Reconstructing Christchurch: A Seismic Shift in Building Structural Systems. Quake Center Report, Department of Civil and Natural Resources Engineering, University of Canterbury. 2017
2 X Lu, L Ye, Y Ma, D Tang. Lessons from the collapse of typical RC frames in Xuankou School during the great Wenchuan Earthquake. Advances in Structural Engineering, 2012, 15(1): 139–153
https://doi.org/10.1260/1369-4332.15.1.139
3 F Marquis, J J Kim, K J Elwood, S E Chang. Understanding post-earthquake decisions on multi-storey concrete buildings in Christchurch, New Zealand. Bulletin of Earthquake Engineering, 2017, 15(2): 731–758
https://doi.org/10.1007/s10518-015-9772-8
4 G W Housner. The dynamic behavior of water tanks. Bulletin of the Seismological Society of America, 1963, 53(2): 381–387
https://doi.org/10.1785/BSSA0530020381
5 M J N Priestley, R J Evison, A J Carr. Seismic response of structures free to rock on their foundations. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(3): 141–150
https://doi.org/10.5459/bnzsee.11.3.141-150
6 A Rutenberg, P C Jennings, G W Housner. The response of veterans hospital building 41 in the San Fernando earthquake. Earthquake Engineering & Structural Dynamics, 1982, 10(3): 359–379
https://doi.org/10.1002/eqe.4290100303
7 M Bruneau, A Reinhorn. Exploring the concept of seismic resilience for acute care facilities. Earthquake Spectra, 2007, 23(1): 41–62
https://doi.org/10.1193/1.2431396
8 Y Ru, L He, H Jiang. Study on a new type of beam−column joint equipped with inclined tapered steel plates. Journal of Building Engineering, 2022, 45: 103581
https://doi.org/10.1016/j.jobe.2021.103581
9 Y Ru, L He, H Jiang. Investigation on a self-centering beam−column joint with tapered steel plate dampers. Journal of Constructional Steel Research, 2022, 197: 107479
https://doi.org/10.1016/j.jcsr.2022.107479
10 H Chi, J Liu. Seismic behavior of post-tensioned column base for steel self-centering moment resisting frame. Journal of Constructional Steel Research, 2012, 78: 117–130
https://doi.org/10.1016/j.jcsr.2012.07.005
11 V C Kamperidis, T L Karavasilis, G Vasdravellis. Self-centering steel column base with metallic energy dissipation devices. Journal of Constructional Steel Research, 2018, 149: 14–30
https://doi.org/10.1016/j.jcsr.2018.06.027
12 F Freddi, C A Dimopoulos, T L Karavasilis. Experimental evaluation of a rocking damage-free steel column base with friction devices. Journal of Structural Engineering, 2020, 146(10): 04020217
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002779
13 Y A Chen, C A Chen, C B Chen. Study on seismic performance of prefabricated self-centering beam to column rotation friction energy dissipation connection. Engineering Structures, 2021, 241: 112136
https://doi.org/10.1016/j.engstruct.2021.112136
14 B Wang, S Zhu, C Qiu, H Jin. High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation. Engineering Structures, 2019, 182: 446–458
https://doi.org/10.1016/j.engstruct.2018.12.077
15 Y Lu, Z Guo, Y Liu, S H Basha. Performance of prefabricated RC column with replaceable column-base connection under cyclic lateral loads. Engineering Structures, 2021, 240: 112343
https://doi.org/10.1016/j.engstruct.2021.112343
16 T Guo, L Song, K Yang, R Zhu, S Tesfamariam. Experimental investigation and numerical simulation of self-centering concrete frames with sliding infill walls. Journal of Building Engineering, 2022, 52: 104435
https://doi.org/10.1016/j.jobe.2022.104435
17 X Wang, C Xie, L Lin, J Li. Seismic behavior of self-centering concrete-filled square steel tubular (CFST) column base. Journal of Constructional Steel Research, 2019, 156: 75–85
https://doi.org/10.1016/j.jcsr.2019.01.025
18 Y Yang, P Yang, P Shen, S Cai, H Gao. Experimental study on seismic behavior of SCRC column base joints with replaceable dampers. Journal of Building Engineering, 2022, 45: 103174
https://doi.org/10.1016/j.jobe.2021.103174
19 S L Billington, J K Yoon. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete. Journal of Bridge Engineering, 2004, 9(4): 353–363
https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(353
20 D Marriott, S Pampanin, A Palermo. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters. Earthquake Engineering & Structural Dynamics, 2009, 38(3): 331–354
https://doi.org/10.1002/eqe.857
21 R Hassanli, O Youssf, J E Mills, R Karim, T Vincent. Performance of segmental self-centering rubberized concrete columns under different loading directions. Journal of Building Engineering, 2018, 20: 285–302
https://doi.org/10.1016/j.jobe.2018.08.003
22 M J N Priestley, S Sritharan, J R Conley, S Pampanin. Preliminary results and conclusions from the PRESSS five-story precast concrete test building. PCI Journal, 1999, 44(6): 42–67
https://doi.org/10.15554/pcij.11011999.42.67
23 X Lu, Y Cui, J Liu, W Gao. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame. Earthquake Engineering & Structural Dynamics, 2015, 44(12): 1899–1917
https://doi.org/10.1002/eqe.2560
24 Y Cui, X Lu, C Jiang. Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests. Engineering Structures, 2017, 132: 684–694
https://doi.org/10.1016/j.engstruct.2016.11.066
25 Y Zhang, L Xu. Cyclic response of a self-centering RC wall with tension−compression-coupled disc spring devices. Engineering Structures, 2022, 250: 113404
https://doi.org/10.1016/j.engstruct.2021.113404
26 Y Zhang, L Xu. Experimental investigation of a new self-centering shear wall with resilient hinge devices. Engineering Structures, 2022, 266: 114657
https://doi.org/10.1016/j.engstruct.2022.114657
27 Y Zhang, L Xu. Cyclic loading tests of a resilient hinged self-centering RC wall. Engineering Structures, 2022, 270: 114920
https://doi.org/10.1016/j.engstruct.2022.114920
28 L Xu, Z Lin, X Xie. Assembled self-centering energy dissipation braces and a force method-based model. Journal of Constructional Steel Research, 2022, 190: 107121
https://doi.org/10.1016/j.jcsr.2021.107121
29 T Y Yang, V K Boddapati, M A Q Al-Janabi, D P Tung. Seismic performance of controlled-rocking concentrically braced frames designed by the equivalent energy procedure. Engineering Structures, 2021, 237: 112209
https://doi.org/10.1016/j.engstruct.2021.112209
30 M A Q Al-Janabi, T Y Yang. Seismic performance assessment of novel self-centering friction-based eccentrically braced frames. Engineering Structures, 2021, 241: 112456
https://doi.org/10.1016/j.engstruct.2021.112456
31 B Wang, H Jiang, J Wang. Numerical simulation and behavior insights of steel columns with SMA bolts towards earthquake resilience. Journal of Constructional Steel Research, 2019, 161: 285–295
https://doi.org/10.1016/j.jcsr.2019.07.011
32 E Elettore, F Freddi, M Latour, G Rizzano. Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases. Journal of Constructional Steel Research, 2021, 179: 106543
https://doi.org/10.1016/j.jcsr.2021.106543
33 S M Goshtaei, S Moradi, K M A Hossain. Sensitivity analysis of self-centering column base connections with shape memory alloy bolts. Structures, 2022, 38: 1050–1065
https://doi.org/10.1016/j.istruc.2022.02.064
34 T Guo, Y Hao, L Song, Z Cao. Shake-table tests and numerical analysis of self-centering prestressed concrete frame. ACI Structural Journal, 2019, 116(3): 3–17
https://doi.org/10.14359/51714472
35 D ZhangH ChenL Han. Experimental study on the seismic behavior of RC column with rubber layer built in its plastic hinge. Engineering Mechanics, 2009, 26(10): 102–110 (in Chinese)
36 50010-2010 GB. Code for Design of Concrete Structures. Beijing: China Standard Press, 2010 (in Chinese)
37 Y XiaoZ ChenJ ZhouY LengR Xia. Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment. Advances in Mechanical Engineering, 2017, 9(9): 1687814017719642
38 Z Qu. Predicting nonlinear response of an RC bridge pier subject to shake table motions. In: Proceedings of the 9th International Conference on Urban Earthquake Engineering (9CUEE). Tokyo: Tokyo Institute of Technology, 2012, 1717–1724
39 H Hocheng, C C Nien. Numerical analysis of effects of mold features and contact friction on cavity filling in the nanoimprinting process. Journal of Microlithography Microfabrication & Microsystems, 2006, 5(1): 011004
https://doi.org/10.1117/1.2177286
40 Y Liu, W Wang. Concept and analysis of a low-cost energy dissipater with partially self-centering mechanism. Journal of Building Engineering, 2021, 44: 102881
https://doi.org/10.1016/j.jobe.2021.102881
41 Y Zhu, Y Zhang, J Shi. Finite element analysis of flexural behavior of precast segmental UHPC beams with prestressed bolted hybrid joints. Engineering Structures, 2021, 238: 111492
https://doi.org/10.1016/j.engstruct.2020.111492
42 A K Chopra. Dynamics of Structures: Theory and Applications to Earthquake Engineering. Upper Saddle River, NJ: Pearson Prentice Hall, 2017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed