Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2023, Vol. 17 Issue (9): 1413-1427   https://doi.org/10.1007/s11709-023-0953-2
  本期目录
Microdamage study of granite under thermomechanical coupling based on the particle flow code
Chong SHI1,2, Yiping ZHANG1,2(), Yulong ZHANG3(), Xiao CHEN1,2, Junxiong YANG4
1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
2. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
3. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
4. Department of Civil and Mineral Engineering, University of Toronto, Toronto M5S1A1, Canada
 全文: PDF(10821 KB)   HTML
Abstract

The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

Key wordsthermomechanical coupling effect    granite    improved linear parallel bond model    thermal property    particle flow code
收稿日期: 2022-10-15      出版日期: 2023-12-21
Corresponding Author(s): Yiping ZHANG,Yulong ZHANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2023, 17(9): 1413-1427.
Chong SHI, Yiping ZHANG, Yulong ZHANG, Xiao CHEN, Junxiong YANG. Microdamage study of granite under thermomechanical coupling based on the particle flow code. Front. Struct. Civ. Eng., 2023, 17(9): 1413-1427.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-023-0953-2
https://academic.hep.com.cn/fsce/CN/Y2023/V17/I9/1413
Fig.1  
Fig.2  
numerical sample value
sample width W (mm) 50
sample height H (mm) 100
particle diameter D (mm) 0.6–1.5
Tab.1  
numerical sample particle density ρ (kg/m3)
plagioclase 2700
quartz 3100
feldspar 2760
mica 2760
Tab.2  
Fig.3  
Fig.4  
contact parameters in the parallel bond model plagioclase quartz feldspar mica
effective modulus E* (GPa) 35.14 70.28 31.63 17.57
bond effective modulus E¯ * (GPa) 18.56 37.12 16.70 9.28
normal-to-shear stiffness ratio κ * 2.5 2.0 2.5 4.0
bond normal-to-shear stiffness ratio κ¯* 2.5 2.0 2.5 4.0
tensile strength σ¯c (MPa) 99.30 141.86 113.49 56.74
shear strength τ¯c (MPa) 198.60 283.72 226.98 113.49
friction coefficient μ 1.27 1.59 1.43 0.48
friction angle ϕ¯ (° ) 55.86 79.7 63.84 31.92
moment contribution factor β¯ 0.5 0.5 0.5 0.5
Tab.3  
Fig.5  
Fig.6  
Fig.7  
thermal parameters in the LPBM plagioclase quartz feldspar mica
coefficient of linear thermal expansion α (10−5 °C−1) 1.8 1.9 1.1 5.2
specific heat Cv (J/(kg·°C)) 1015 1015 1015 1015
thermal resistance η (°C·W−1) 1.84 0.30 2.30 0.23
Tab.4  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 S Chaki, M Takarli, W P Agbodjan. Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction & Building Materials, 2008, 22(7): 1456–1461
https://doi.org/10.1016/j.conbuildmat.2007.04.002
2 Y Y Cai, C H Luo, J Yu, L M Zhang. Experimental study on mechanical properties of thermal-damage granite rock under triaxial unloading confining pressure. Journal of Geotechnical Engineering, 2015, 37: 1173–1180
3 F Zhao, Z M Shi, Q Sun. Fracture mechanics behavior of jointed granite exposed to high temperatures. Rock Mechanics and Rock Engineering, 2021, 54(5): 2183–2196
https://doi.org/10.1007/s00603-021-02393-3
4 D Y Li, X L Su, F H Gao, Z D Liu. Experimental studies on physical and mechanical behaviors of heated rocks with pre-fabricated hole exposed to different cooling rates. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(4): 125
5 Y H Huang, S Q Yang, W L Tian, J Zhao, D Ma, C S Zhang. Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Archives of Civil and Mechanical Engineering, 2017, 17(4): 912–925
https://doi.org/10.1016/j.acme.2017.03.007
6 Q Sun, W Q Zhang, Y M Zhu, Z Huang. Effect of high temperatures on the thermal properties of granite. Rock Mechanics and Rock Engineering, 2019, 52(8): 2691–2699
https://doi.org/10.1007/s00603-019-1733-0
7 L F Fan, J W Gao, Z J Wu, S Q Yang, G W Ma. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering, 2018, 140: 505–519
https://doi.org/10.1016/j.applthermaleng.2018.05.074
8 Y L Chen, J Ni, W Shao, R Azzam. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62–66
https://doi.org/10.1016/j.ijrmms.2012.07.026
9 Q Sun, W Q Zhang, L Xue, Z Z Zhang, T M Su. Thermal damage pattern and thresholds of granite. Environmental Earth Sciences, 2015, 74(3): 2341–2349
https://doi.org/10.1007/s12665-015-4234-9
10 X L XuZ X KangM JiW X GeJ Chen. Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Procedia Earth and Planetary Science. 2009, 1(1): 432–437
11 T B Yin, X B Li, W Z Cao, K W Xia. Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mechanics and Rock Engineering, 2015, 48(6): 2213–2223
https://doi.org/10.1007/s00603-015-0712-3
12 S Q Yang, P G Ranjith, H W Jing, W L Tian, Y Ju. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 2017, 65: 180–197
https://doi.org/10.1016/j.geothermics.2016.09.008
13 P W J Glover, P Baud, M Darot, P G Meredith, S A Boon, M Leravalec, S Zoussi, T Reuschlé. α/β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 1995, 120(3): 775–782
https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
14 Z H Zhao. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mechanics and Rock Engineering, 2016, 49(3): 747–762
https://doi.org/10.1007/s00603-015-0767-1
15 I Van der Molen. The shift of the α−β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics, 1981, 73(4): 323–342
https://doi.org/10.1016/0040-1951(81)90221-3
16 J M Branlund, A M Hofmeister. Thermal diffusivity of quartz to 1000 °C: Effects of impurities and the α−β phase transition. Physics and Chemistry of Minerals, 2007, 34(8): 581–595
https://doi.org/10.1007/s00269-007-0173-7
17 M Staněk, Y Geraud. Granite microporosity changes due to fracturing and alteration: Secondary mineral phases as proxies for porosity and permeability estimation. Solid Earth, 2019, 10(1): 251–274
https://doi.org/10.5194/se-10-251-2019
18 S Ghasemi, M Khamehchiyan, A Taheri, M R Nikudel, A Zalooli. Crack evolution in damage stress thresholds in different minerals of granite rock. Rock Mechanics and Rock Engineering, 2020, 53(3): 1163–1178
https://doi.org/10.1007/s00603-019-01964-9
19 Y ZhangY S Zhao. Thermal cracking meso-characteristic of LuHui granite. In: Proceedings of the International Conference on Mechanical Engineering and Green Manufacturing (MEGM) 2010. Xiangtan: Mechanical Engineering and Green Manufacturing, 2010
20 Y S ZhaoQ R MengT H KangN ZhangB P Xi. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite. Journal of Geotechnical Engineering, 2008, 27: 28−34 (in Chinese)
21 S W Chen, C H Yang, G B Wang. Evolution of thermal damage and permeability of Beishan granite. Applied Thermal Engineering, 2017, 110: 1533–1542
https://doi.org/10.1016/j.applthermaleng.2016.09.075
22 W R Lin. Permanent strain of thermal expansion and thermally induced microcracking in Inada granite. Journal of Geophysical Research. Solid Earth, 2002, 107(B10): 107
23 H F Wang, B P Bonner, S R Carlson, B J Kowallis, H C Heard. Thermal stress cracking in granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(5): 234
https://doi.org/10.1016/0148-9062(89)90985-6
24 X D Hu, X Z Song, Y Liu, G S Li, Z H Shen, Z H Lyu, Q L Liu. Lowest required surface temperature for thermal spallation in granite and sandstone specimens: Experiments and simulations. Rock Mechanics and Rock Engineering, 2019, 52(6): 1689–1703
https://doi.org/10.1007/s00603-018-1665-0
25 H Liu, K Zhang, T Liu, H Cao, Y Wang. Experimental and numerical investigations on tensile mechanical properties and fracture mechanism of granite after cyclic thermal shock. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(1): 18
26 F Wang, H Konietzky, T Frühwirt, Y J Dai. Laboratory testing and numerical simulation of properties and thermal-induced cracking of Eibenstock granite at elevated temperatures. Acta Geotechnica, 2020, 15(8): 2259–2275
https://doi.org/10.1007/s11440-020-00926-8
27 Y M Zhang, H A Mang. Global cracking elements: A novel tool for Galerkin-based approaches simulating quasi-brittle fracture. International Journal for Numerical Methods in Engineering, 2020, 121(11): 2462–2480
https://doi.org/10.1002/nme.6315
28 M Jang, H S Yang. Experiment and numerical analysis for thermo-mechanical behavior of granite block. Geosystem Engineering, 2005, 8(1): 9–14
https://doi.org/10.1080/12269328.2005.10541231
29 C SchrankF FusseisA KarrechS RevetsK Regenauer LiebL Jie. Thermal cracking of Westerly granite: From physical to numerical experiment. In: Proceedings of the EGU General Assembly Conference Abstracts. Vienna: EGU General Assembly, 2010
30 Q L Yu, P G Ranjith, H Y Liu, T H Yang, S B Tang, C A Tang, S Q Yang. A mesostructure-based damage model for thermal cracking analysis and application in granite at elevated temperatures. Rock Mechanics and Rock Engineering, 2015, 48(6): 2263–2282
https://doi.org/10.1007/s00603-014-0679-5
31 F Wang, H Konietzky. Thermal damage evolution of granite under slow and high-speed heating conditions. Computers and Geotechnics, 2020, 123: 103590
https://doi.org/10.1016/j.compgeo.2020.103590
32 Y M Zhang, X Y Zhuang. Cracking elements: A self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements in Analysis and Design, 2018, 144: 84–100
https://doi.org/10.1016/j.finel.2017.10.007
33 Y M Zhang, X Y Zhuang. Cracking elements method for dynamic brittle fracture. Theoretical and Applied Fracture Mechanics, 2019, 102: 1–9
https://doi.org/10.1016/j.tafmec.2018.09.015
34 Y M Zhang, J U Huang, Y Yuan, H A Mang. Cracking elements method with a dissipation-based arc-length approach. Finite Elements in Analysis and Design, 2021, 195: 103573
https://doi.org/10.1016/j.finel.2021.103573
35 Y M Zhang, Z R Gao, Y Y Li, X Y Zhuang. On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elements in Analysis and Design, 2020, 170: 103333
https://doi.org/10.1016/j.finel.2019.103333
36 T Rabczuk, G Zi, S Bordas, H Nguyen Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
37 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
38 S Y Yu, X H Ren, J X Zhang, H J Wang, Z H Sun. An improved form of smoothed particle hydrodynamics method for crack propagation simulation applied in rock mechanics. International Journal of Mining Science and Technology, 2021, 31(3): 421–428
https://doi.org/10.1016/j.ijmst.2021.01.009
39 Y M Zhang, X Q Yang, X Y Wang, X Y Zhuang. A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theoretical and Applied Fracture Mechanics, 2021, 113: 102930
https://doi.org/10.1016/j.tafmec.2021.102930
40 Y M Zhang, R Lackner, M Zeiml, H A Mang. Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations. Computer Methods in Applied Mechanics and Engineering, 2015, 287: 335–366
https://doi.org/10.1016/j.cma.2015.02.001
41 P A Cundall, O D L Strack. A discrete numerical model for granular assembilies. Geotechnique, 1979, 29(1): 47–65
https://doi.org/10.1680/geot.1979.29.1.47
42 Y L Zhang, J F Shao, Z B Liu, C Shi, G de Saxce. Effects of confining pressure and loading path on deformation and strength of cohesive granular materials: A three-dimensional DEM analysis. Acta Geotechnica, 2019, 14(2): 443–460
https://doi.org/10.1007/s11440-018-0671-4
43 Y L Zhang, J F Shao, G de Saxce, C Shi, Z B Liu. Study of deformation and failure in an anisotropic rock with a three-dimensional discrete element model. International Journal of Rock Mechanics and Mining Sciences, 2019, 120: 17–28
https://doi.org/10.1016/j.ijrmms.2019.05.007
44 P A Cundall, R D Hart. Numerical modelling of discontinua. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30: 101–113
45 Y L Zhang, Z B Liu, B Han, S Zhu, X Zhang. Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties. Journal of Petroleum Science Engineering, 2022, 210: 109798
https://doi.org/10.1016/j.petrol.2021.109798
46 Y L Zhang, Y P Zhang, B Han, X Zhang, Y Jia. Parameter studies on hydraulic fracturing in brittle rocks based on a modified hydromechanical coupling model. Energies, 2022, 15(7): 2687
https://doi.org/10.3390/en15072687
47 Y L Zhang, J F Shao, S Zhu, Z B Liu, C Shi. Effect of rock anisotropy on initiation and propagation of fractures due to fluid pressurization. Acta Geotechnica, 2022, 18(4): 2039–2058
https://doi.org/10.1007/s11440-022-01703-5
48 Consulting Group Itasca. User’s Manual: PFC2D-particle Flow Code in 2 Dimensions. Minneapolis: Itasca Consulting Group, 2004
49 T S Wanne, R P Young. Bonded-particle modeling of thermally fractured granite. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 789–799
https://doi.org/10.1016/j.ijrmms.2007.09.004
50 M Xia, C B Zhao, B E Hobbs. Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength. Computers and Geotechnics, 2014, 55: 461–473
https://doi.org/10.1016/j.compgeo.2013.09.004
51 D O Potyondy, P A Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364
https://doi.org/10.1016/j.ijrmms.2004.09.011
52 Y L Zhang, Z B Liu, C Shi, J F Shao. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach. Rock Mechanics and Rock Engineering, 2018, 51(4): 1173–1191
https://doi.org/10.1007/s00603-017-1385-x
53 Y P Zhang, C Shi, Y L Zhang, J X Yang, X Chen. Numerical analysis of the brittle-ductile transition of deeply buried marble using a discrete approach. Computational Particle Mechanics, 2021, 8(4): 893–904
https://doi.org/10.1007/s40571-020-00375-w
54 Q Sun, S E Chen, Q Gao, W Q Zhang, J S Geng, Y L Zhang. Analyses of the factors influencing sandstone thermal conductivity. Acta Geodynamica et Geomaterialia, 2017, 14: 173–180
https://doi.org/10.13168/AGG.2017.0001
55 Y L Zhang, J F Shao, Z B Liu, C Shi. An improved hydromechanical model for particle flow simulation of fractures in fluid-saturated rocks. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104870
https://doi.org/10.1016/j.ijrmms.2021.104870
56 Y L ZhangB HanX ZhangY JiaC Zhu. Study of interactions between induced and natural fracture effects on hydraulic fracture propagation using a discrete approach. Lithosphere, 2021: 5810181
57 S H HuG ZhangM ZhangX L JiangY F Chen. Deformation characteristics tests and damage mechanics analysis of Beishan granite after thermal treatment. Rock and Soil Mechanics, 2016, 37: 3427–3436 (in Chinese)
58 Y M Zhang, Z R Gao, X Y Wang, Q Liu. Image representations of numerical simulations for training neural networks. Computer Modeling in Engineering & Sciences, 2023, 134(2): 821–833
https://doi.org/10.32604/cmes.2022.022088
59 Y M Zhang, Z R Gao, X Y Wang, Q Liu. Predicting the pore-pressure and temperature of fire-loaded concrete by a hybrid neural network. International Journal of Computational Methods, 2021, 19(8): 2142011
60 C Shi, W K Yang, J X Yang, X Chen. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granular Matter, 2019, 21(2): 38
https://doi.org/10.1007/s10035-019-0889-3
61 Z HanL Zhang J ZhouG YuanP Wang. Uniaxial compression test and numerical studies of grain size effect on mechanical properties of granite. Journal of Engineering Geology, 2019, 27: 497−504 (in Chinese)
62 X P Zhang, L N Y Wong. Choosing a proper loading rate for bonded-particle model of intact rock. International Journal of Fracture, 2014, 189(2): 163–179
https://doi.org/10.1007/s10704-014-9968-y
63 F BonettoJ L LebowitzL R Bellet. Fourier’s Law: A Challenge to Theorists, in Mathematical Physics 2000. London: Imperial College, 2000
64 E Plevova, L Vaculikova, A Kozusnikova, M Ritz, G S Martynkova. Thermal expansion behaviour of granites. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1555–1561
https://doi.org/10.1007/s10973-015-4996-z
65 Z N Zhu, S Q Yang, R Wang, H Tian, G S Jiang, B Dou. Effects of high temperature on the linear thermal expansion coefficient of Nanan granite. Acta Geodaetica et Geophysica, 2022, 57(2): 231–243
https://doi.org/10.1007/s40328-022-00375-7
66 P Xiang, H C Xu, H G Ji, Q Li, H Wang. Thermal property of granite in deep strata and its effect on thermal zone of surrounding rock. Shock and Vibration, 2022, 2022: 1–9
67 H Yurtseven, M Desticioglu. Critical behaviour of the heat capacity near the α−β phase transition in quartz. High-Temperature Materials and Processes, 2013, 32(2): 189–194
https://doi.org/10.1515/htmp-2012-0038
68 S K Saxena. Earth mineralogical model: Gibbs free energy minimization computation in the system MgO-FeO-SiO2. Geochimica et Cosmochimica Acta, 1996, 60(13): 2379–2395
https://doi.org/10.1016/0016-7037(96)00096-8
69 S Q Miao, H P Li, G Chen. Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. Journal of Thermal Analysis and Calorimetry, 2014, 115(2): 1057–1063
https://doi.org/10.1007/s10973-013-3427-2
70 A H A Pereira, D Y Miyaji, M D Cabrelon, J Medeiros, J A Rodrigues. A study about the contribution of the α−β phase transition of quartz to thermal cycle damage of a refractory used in fluidized catalytic cracking units. Cerâmica, 2014, 60(355): 449–456
https://doi.org/10.1590/S0366-69132014000300019
71 Q Sun, C Lu, L W Cao, W C Li, J S Geng, W Q Zhang. Thermal properties of sandstone after treatment at high temperature. International Journal of Rock Mechanics and Mining Sciences, 2016, 85: 60–66
https://doi.org/10.1016/j.ijrmms.2016.03.006
72 X G Zhao, Z Zhao, Z Guo, M Cai, X Li, P F Li, L Chen, J Wang. Influence of thermal treatment on the thermal conductivity of Beishan granite. Rock Mechanics and Rock Engineering, 2018, 51(7): 2055–2074
https://doi.org/10.1007/s00603-018-1479-0
73 X G Zhao, H R Xu, Z Zhao, Z Guo, M Cai, J Wang. Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 121–136
https://doi.org/10.1016/j.ijrmms.2019.01.014
74 Y H Wang, S C Leung. A particulate-scale investigation of cemented sand behavior. Canadian Geotechnical Journal, 2008, 45(1): 29–44
https://doi.org/10.1139/T07-070
75 F Wang, H Konietzky, T Fruhwirt, Y W Li, Y J Dai. Impact of cooling on fracturing process of granite after high-speed heating. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104155
https://doi.org/10.1016/j.ijrmms.2019.104155
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed