Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2023, Vol. 17 Issue (8): 1163-1187   https://doi.org/10.1007/s11709-023-0987-5
  本期目录
Influence of surface cracking, anchor head profile, and anchor head size on cast-in headed anchors in geopolymer concrete
Trijon KARMOKAR(), Alireza MOYHEDDIN
School of Engineering, Edith Cowan University, Perth 6027, Australia
 全文: PDF(14016 KB)   HTML
Abstract

In this study, the concrete cone capacity, concrete cone angle, and load–displacement response of cast-in headed anchors in geopolymer concrete are explored using numerical analyses. The concrete damaged plasticity (CDP) model in ABAQUS is used to simulate the behavior of concrete substrates. The tensile behavior of anchors in geopolymer concrete is compared with that in normal concrete as well as that predicted by the linear fracture mechanics (LFM) and concrete capacity design (CCD) models. The results show that the capacity of the anchors in geopolymer concrete is 30%–40% lower than that in normal concrete. The results also indicate that the CCD model overestimates the capacity of the anchors in geopolymer concrete, whereas the LFM model provides a much more conservative prediction. The extent of the difference between the predictions by the numerical analysis and those of the above prediction models depends on the effective embedment depth of the anchor and the anchor head size. The influence of concrete surface cracking on the capacity of the anchor is shown to depend on the location of the crack and the effective embedment depth. The influence of the anchor head profile on the tensile capacity of the anchors is found to be insignificant.

Key wordscast-in anchor    concrete cone capacity    geopolymer concrete    head size    surface crack    anchor profile
收稿日期: 2022-09-28      出版日期: 2023-11-16
Corresponding Author(s): Trijon KARMOKAR   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2023, 17(8): 1163-1187.
Trijon KARMOKAR, Alireza MOYHEDDIN. Influence of surface cracking, anchor head profile, and anchor head size on cast-in headed anchors in geopolymer concrete. Front. Struct. Civ. Eng., 2023, 17(8): 1163-1187.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-023-0987-5
https://academic.hep.com.cn/fsce/CN/Y2023/V17/I8/1163
Fig.1  
material property normal concrete geopolymer concrete
fcm (MPa) 34 34
ftm (MPa) 2.7 2.6
Ec (MPa) 26608 22987
GF (N/m) 82.4 41.4
Tab.1  
plasticity parameter value references
DA 35° Subsection 3.1
eccentricity 0.1 [88]
σb0/σc0 1.16 [88]
Kc 0.67 [88]
VP 0.000025 Subsection 3.2
Tab.2  
Fig.2  
Fig.3  
model ID σb/fc hef (mm) fcm (MPa) Ref.
calibration 1 2.9 50 32 [9]
calibration 2 2.3 80 42 [29]
calibration 3 8.4 220 34 [11]
Tab.3  
Fig.4  
Fig.5  
hef large head
1.3T 2.5T 5T
d dh σb/fc No. of tests d dh σb/fc No. of tests d dh σb/fc No. of tests
40 10 25 1.8 5 14 35 0.9 5 20 45 0.6 5
70 10 25 4.1 5 14 35 2.1 5 20 45 1.3 5
90 14 35 3.0 5 20 45 1.9 5
Tab.4  
Fig.6  
Fig.7  
hef small head medium head large head
d dh σb/fc d dh σb/fc 1.3T 2.5T 5T
d dh σb/fc d dh σb/fc d dh σb/fc
40 10 12.0 ≈ 20 10 14 ≈ 9 10 25 1.8 14 35 0.9 20 45 0.6
70 14 17.5 ≈ 20 14 21 ≈ 9 10 25 4.1 14 35 2.1 20 45 1.3
90 20 24.5 ≈ 20 20 29 ≈ 9 14 35 3.0 20 45 1.9
Tab.5  
Serie model anchor WLLs anchor head size concrete type* hef (mm) anchor profile Lcr (mm)
A 1 1.3T large G 40 P1
2 2.5T G 40 P1
3 5T G 40 P1
4 1.3T G 70 P1
5 2.5T G 70 P1
6 5T G 70 P1
7 2.5T G 90 P1
8 5T G 90 P1
B 9 1.3T large N 40 P1
10 2.5T N 40 P1
11 5T N 40 P1
12 1.3T N 70 P1
13 2.5T N 70 P1
14 5T N 70 P1
15 2.5T N 90 P1
16 5T N 90 P1
C 17 2.5T large G 40 P1 0.5hef
18 2.5T G 40 P1 1.0hef
19 2.5T G 40 P1 1.5hef
20 2.5T G 70 P1 0.5hef
21 2.5T G 70 P1 1.0hef
22 2.5T G 70 P1 1.5hef
23 2.5T G 90 P1 0.5hef
24 2.5T G 90 P1 1.0hef
25 2.5T G 90 P1 1.5hef
D 26 2.5T large G 40 P2
27 2.5T G 70 P2
28 2.5T G 90 P2
29 2.5T N 40 P2
30 2.5T N 70 P2
31 2.5T N 90 P2
E 32 small G 40 P2
33 medium G 40 P2
34 small N 40 P2
35 medium N 40 P2
36 small G 70 P2
37 medium G 70 P2
38 small N 70 P2
39 medium N 70 P2
40 small G 90 P2
41 medium G 90 P2
42 small N 90 P2
43 medium N 90 P2
Tab.6  
model No. parameters and results Nu,num/Nu,exp αnum (° ) αexp (° )
WLL hef (mm) Nu,num Nu,exp
1 1.3T 40 17.0 15.6 1.09 27 19
2 2.5T 40 17.7 17.0 1.04 28 20
3 5T 40 18.7 19.7 0.95 26 20
4 1.3T 70 46.2 41.3 1.12 23 20
5 2.5T 70 46.5 45.4 1.02 22 19
6 5T 70 48.9 48.7 1.00 21 20
7 2.5T 90 75.4 76.2 0.99 23 22
8 5T 90 80.0 78.2 1.02 24 23
Tab.7  
Fig.8  
model No. parameters and results predicted capacities comparisons
WLL hef (mm) Nu,num Nu,CCD Nu,LFM Nu,num/Nu,CCD Nu,num/Nu,LFM
1 1.3T 40 17.0 24.8 16.4 0.69 1.04
2 2.5T 40 17.7 24.8 16.4 0.71 1.08
3 5T 40 18.7 24.8 16.4 0.75 1.14
4 1.3T 70 46.2 57.4 38.0 0.80 1.22
5 2.5T 70 46.5 57.4 38.0 0.81 1.22
6 5T 70 48.9 57.4 38.0 0.85 1.29
7 2.5T 90 75.4 83.6 55.4 0.90 1.36
8 5T 90 80.0 83.6 55.4 0.96 1.44
Tab.8  
model No. parameters and results predicted capacities comparisons αnorm (° ) αgeop (° )
WLL hef (mm) Nu,norm Nu,geop Nu,CCD Nu,LFM Nu,geop/Nu,norm Nu,norm/Nu,CCD Nu,norm/Nu,LFM
9 1.3T 40 27.0 17.0 24.8 24.9 0.63 1.09 1.08 35 27
10 2.5T 40 28.6 17.7 24.8 24.9 0.62 1.15 1.15 36 28
11 5T 40 33.4 18.7 24.8 24.9 0.56 1.35 1.34 36 26
12 1.3T 70 69.9 46.2 57.4 57.6 0.66 1.22 1.21 33 23
13 2.5T 70 70.2 46.5 57.4 57.6 0.66 1.22 1.22 35 22
14 5T 70 72.2 48.9 57.4 57.6 0.68 1.26 1.25 32 21
15 2.5T 90 100.8 75.4 83.6 84.0 0.75 1.21 1.20 33 23
16 5T 90 111.6 80.0 83.6 84.0 0.72 1.33 1.33 35 24
Tab.9  
Fig.9  
model No. parameters and results Nu,cr/Nu,geop αcr (° ) αgeop (° )
WLL hef (mm) Lcr Nu,cr Nu,geop
17 2.5T 40 0.5hef 16.7 17.7 0.94 29 28
18 2.5T 40 1.0hef 16.4 17.7 0.93 28 28
19 2.5T 40 1.5hef 11.9 17.7 0.67 37 28
20 2.5T 70 0.5hef 48.5 46.5 1.04 23 22
21 2.5T 70 1.0hef 47.5 46.5 1.02 22 22
22 2.5T 70 1.5hef 41.4 46.5 0.89 34 22
23 2.5T 90 0.5hef 78.4 75.4 1.04 25 23
24 2.5T 90 1.0hef 77.2 75.4 1.02 25 23
25 2.5T 90 1.5hef 74.5 75.4 0.99 25 23
Tab.10  
Fig.10  
model No. parameters and results Nu,P2/Nu,P1 αP2 (° ) αP1 (° )
WLL hef (mm) concrete type Nu,P2 Nu,P1
26 2.5T 40 G 16.8 17.7 0.94 28 28
27 2.5T 40 N 27.7 28.6 0.97 36 36
28 2.5T 70 G 44.0 46.5 0.95 24 22
29 2.5T 70 N 70.9 70.2 1.01 35 35
30 2.5T 90 G 77.6 75.4 1.03 23 23
31 2.5T 90 N 104.6 100.8 1.04 33 33
Tab.11  
Fig.11  
model No. parameters and results predicted capacities comparisons α (° )
hef (mm) concrete type anchor Nu Nu,CCD Nu,LFM Nu,AH Nu/Nu,CCD Nu/Nu,LFM Nu/Nu,AH
head size σb/fc CCD LFM CCD LFM
32 40 G S 20.0 13.9 24.8 16.4 23.9 16.5 0.56 0.85 0.58 0.84 44
33 40 G M 9.0 14.4 24.8 16.4 25.9 17.9 0.58 0.88 0.56 0.80 39
26 40 G L 0.9 16.8 24.8 16.4 32.7 22.7 0.68 1.02 0.51 0.74 28
34 40 N S 20.0 24.4 24.8 24.9 23.9 24.0 0.98 0.98 1.02 1.02 42
35 40 N M 9.0 26.5 24.8 24.9 25.9 26.0 1.07 1.06 1.02 1.02 42
27 40 N L 0.9 27.7 24.8 24.9 32.7 32.9 1.12 1.11 0.85 0.84 36
36 70 G S 20.0 36.1 57.4 38.0 55.9 35.2 0.63 0.95 0.65 1.03 47
37 70 G M 9.0 37.7 57.4 38.0 60.5 38.1 0.66 0.99 0.62 0.99 42
28 70 G L 2.1 44.0 57.4 38.0 69.9 48.3 0.77 1.16 0.63 0.91 24
38 70 N S 20.0 54.1 57.4 57.6 55.9 51.2 0.94 0.94 0.97 1.06 47
39 70 N M 9.0 58.6 57.4 57.6 60.5 55.3 1.02 1.02 0.97 1.06 45
29 70 N L 2.1 70.9 57.4 57.6 69.9 70.1 1.24 1.23 1.01 1.01 35
40 90 G S 20.0 62.2 83.6 55.4 83.3 49.4 0.74 1.12 0.75 1.26 47
41 90 G M 9.0 67.7 83.6 55.4 90.1 53.5 0.81 1.22 0.75 1.27 30
30 90 G L 3.0 77.6 83.6 55.4 97.8 67.8 0.93 1.40 0.79 1.14 23
42 90 N S 20.0 91.6 83.6 84.0 83.3 71.8 1.10 1.09 1.10 1.28 46
43 90 N M 9.0 94.2 83.6 84.0 90.1 77.6 1.13 1.12 1.05 1.21 41
31 90 N L 3.0 104.6 83.6 84.0 97.8 98.4 1.25 1.25 1.07 1.06 33
Tab.12  
Fig.12  
Fig.13  
Fig.14  
1 R EligehausenR MalleeJ F Silva. Anchorage in Concrete Construction. Berlin: Wilhelm Ernst & Sohn Verlag fur Architektur und Technische Wissenschaften, 2006
2 349-01 ACI. Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary. Farmington Hills, MI: ACI Committee 349, 2001
3 R EligehausenG Sawade. A Fracture Mechanics Based Description of the Pull-Out Behavior of Headed Studs Embedded in Concrete. OPUS—Publication Server of the University of Stuttgart, 1989
4 W Fuchs, R Eligehausen, J E Breen. Concrete capacity design (CCD) approach for fastening to concrete. ACI Structural Journal, 1995, 92(1): 73
5 318-19 ACI. Building Code Requirements for Structural Concrete and Commentary. Farmington Hills, MI: ACI Committee 318, 2019
6 349-13 ACI. Code Requirements for Nuclear Safety-Related Concrete Structures and Commentary. Farmington Hills, MI: ACI Committee 349, 2013
7 3850.1 AS:2015. Prefabricated Concrete Elements—General Requirements. Sydney: Standards Australia Committee, 2015
8 1992-4 EN2 Eurocode. Design of Concrete Structures. Design of Fastenings for Use in Concrete. London: BSI, 2018
9 R Piccinin, R Ballarini, S Cattaneo. Pullout capacity of headed anchors in prestressed concrete. Journal of Engineering Mechanics, 2012, 138(7): 877–887
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000395
10 R Piccinin, R Ballarini, S Cattaneo. Linear elastic fracture mechanics pullout analyses of headed anchors in stressed concrete. Journal of Engineering Mechanics, 2009, 136(6): 761–768
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000120
11 R Nilforoush, M Nilsson, L Elfgren. Experimental evaluation of tensile behaviour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal- and high-strength concrete. Engineering Structures, 2017, 147: 195–206
https://doi.org/10.1016/j.engstruct.2017.05.062
12 E J Primavera, J P Pinelli, E H Kalajian. Tensile behavior of cast-in-place and undercut anchors in high-strength concrete. Structural Journal, 1997, 94(5): 583–594
13 M Toth, B Bokor, A Sharma. Anchorage in steel fiber reinforced concrete—Concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Engineering Structures, 2019, 181: 60–75
https://doi.org/10.1016/j.engstruct.2018.12.007
14 S Choi, C Joh, S C Chun. Behavior and strengths of single cast-in anchors in Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) subjected to a monotonic tension or shear. KSCE Journal of Civil Engineering, 2015, 19(4): 964–973
https://doi.org/10.1007/s12205-013-0246-8
15 P J McMackin. Headed steel anchor under combined loading. Engineering Journal, 1973, 43–52
16 A MohyeddinJ Lee. Behaviour of Screw Anchors and Drop-in Anchors in Bubble Deck Slabs. Internal ECU Report. 2018
17 M SchwennK VoitO ZemanK Bergmeister. Post-installed mechanical fasteners in high strength and ultra-high strength performance concrete. Civil Engineering Design, 2019, 1(5–6): 161–167
18 M Gesoglu, T Özturan, M Özel, E Güneyisi. Tensile behavior of post-installed anchors in plain and steel fiber-reinforced normal-and high-strength concretes. ACI Structural Journal, 2005, 102(2): 224
19 A MohyeddinE GadJ Lee. Tensile capacity of screw anchors due to the pull-out failure mode. In: 5th International fib Congress. Melbourne: Federation Internationale du Beton (fib), 2019
20 A Mohyeddin, E Gad, J Lee, M Hafsia, M Saremi. Adverse effect of too-small edge distances on tensile capacity of screw anchors. Australian Journal of Structural Engineering, 2020, 21(1): 94–106
https://doi.org/10.1080/13287982.2019.1707150
21 R Eligehausen, L Mattis, R Wollmershauser, M S Hoehler. Testing anchors in cracked concrete. Concrete International, 2004, 26(7): 66–71
22 R Nilforoush, M Nilsson, L Elfgren, J Ožbolt, J Hofmann, R Eligehausen. Influence of surface reinforcement, member thickness, and cracked concrete on tensile capacity of anchor bolts. ACI Structural Journal, 2017, 114(6): 114
https://doi.org/10.14359/51689505
23 S Y KimC S YuY S Yoon. Sleeve-type expansion anchor behavior in cracked and uncracked concrete. Nuclear Engineering and Design, 2004, 228(1−3): 273−281
24 S Lee, W Jung. Evaluation of structural performance of post-installed anchors embedded in cracked concrete in power plant facilities. Applied Sciences, 2021, 11(8): 3488
https://doi.org/10.3390/app11083488
25 E Baran, A Schultz, C French. Tension tests on cast-in-place inserts: the influence of reinforcement and prestress. PCI Journal, 2006, 51(5): 88–108
https://doi.org/10.15554/PCIJ.09012006.88.108
26 M Nilsson, U Ohlsson, L Elfgren. Effects of surface reinforcement on bearing capacity of concrete with anchor bolts. Cement and Concrete Research, 2011, 2011(44): 161–174
27 R Nilforoush, M Nilsson, L Elfgren. Experimental evaluation of influence of member thickness, anchor-head size, and orthogonal surface reinforcement on the tensile capacity of headed anchors in uncracked concrete. Journal of Structural Engineering, 2018, 144(4): 04018012
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001976
28 J B Winters, C W Dolan. Concrete breakout capacity of cast-in-place concrete anchors in early-age concrete. PCI Journal, 2014, 59(1): 114–131
https://doi.org/10.15554/pcij.01012014.114.131
29 A Al-YousufT PokharelJ LeeE GadK Abdouka J Sanjayan. Performance of cast-in anchors in early age concrete with supplementary cementitious materials. Materials and Structures. 2023, 56(1):1–5
30 A Barraclogh. Analysis of edgelift anchor failures in experimental precast panels. Dissertation for the Doctoral Degree. Perth: Curtin University, 2016
31 Nincevic L M C M M Krešimir, W W Roman. Age and cure dependence of concrete cone capacity in tension. ACI Structural Journal, 2019, 116(4): 91–100
32 O ObayesE GadT PokharelJ LeeK Abdouka. Evaluation of concrete material properties at early age. CivilEng, 2020, 1(3): 326−350
33 A MohyeddinE GadR KhanduK YangdonJ Lee M Ismail. Screw anchors installed in early age concrete. In: Mechanics of Structures and Materials XXIV: Proceedings of the 24th Australian Conference on the Mechanics of Structures and Materials. Perth: CRC Press, 2019
34 A Mohyeddin, E F Gad, K Yangdon, R Khandu, J Lee. Tensile load capacity of screw anchors in early age concrete. Construction & Building Materials, 2016, 127: 702–711
https://doi.org/10.1016/j.conbuildmat.2016.10.046
35 R Nilforoush, M Nilsson, L Elfgren, J Ožbolt, J Hofmann, R Eligehausen. Tensile capacity of anchor bolts in uncracked concrete: influence of member thickness and anchor’s head size. ACI Structural Journal, 2017, 114(6): 1519–1530
https://doi.org/10.14359/51689503
36 A BarracloughF Moeinaddini. Pull-out capacity of cast-in headed anchors in prefabricated concrete elements. In: 3rd International Symposium on Connections between Steel and Concrete Stuttgart. Stuttgart: Institute of Construction Material, 2017
37 R EligehausenP BouskaV Cervenka R Pukl. Fracture Mechanics of Concrete Structures. London: CRC Press, 1992, 517–525
38 J Ožbolt, R Eligehausen, G Periškić, U Mayer. 3D FE analysis of anchor bolts with large embedment depths. Engineering Fracture Mechanics, 2007, 74(1−2): 168–178
https://doi.org/10.1016/j.engfracmech.2006.01.019
39 N H Lee, K S Kim, C J Bang, K R Park. Tensile-headed anchors with large diameter and deep embedment in concrete. ACI Structural Journal, 2007, 104(4): 479
40 G di NunzioA MarchisellaG Muciaccia. The effect of very low bearing pressure on the behavior of cast-in anchors. In: 9th International Conference on Concrete Under Severe Conditions-Environment and Loading. Porto Alegre: Unisinos University, 2019
41 R A Cook. Behavior of chemically bonded anchors. Journal of Structural Engineering, 1993, 119(9): 2744–2762
https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2744
42 A C Ronald, C K Robert. Factors influencing bond strength of adhesive anchors. ACI Structural Journal, 2001, 98(1): 76–86
43 C C Higgins, R E Klingner. Effects of environmental exposure on the performance of cast-in-place and retrofit anchors in concrete. Structural Journal, 1998, 95(5): 506–517
44 M A Lahouar, J F Caron, N Pinoteau, G Forêt, K Benzarti. Mechanical behavior of adhesive anchors under high temperature exposure: Experimental investigation. International Journal of Adhesion and Adhesives, 2017, 78: 200–211
https://doi.org/10.1016/j.ijadhadh.2017.07.004
45 A Mohyeddin, E Gad, S Aria, J Lee. Effect of thread profile on tensile performance of screw anchors in non-cracked concrete. Construction & Building Materials, 2020, 237: 117565
https://doi.org/10.1016/j.conbuildmat.2019.117565
46 T Karmokar, A Mohyeddin, J Lee, T Paraskeva. Concrete cone failure of single cast-in anchors under tensile loading: A literature review. Engineering Structures, 2021, 243: 112615
https://doi.org/10.1016/j.engstruct.2021.112615
47 G DiNunzioG Muciaccia. A literature review of the head-size effect on the capacity of cast-in anchors. In: 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures—Proceedings. Bayonne: FraMCoS, 2019
48 M TóthB BokorA Sharma. Comprehensive literature review on anchorages in steel fibre reinforced concrete. . In: Concrete Structures: New Trends for Eco-Efficiency and Performance. Lisbon: FIB Symposium, 2021
49 N S AndersonD F Meinheit. A review of headed stud design criteria in the sixth edition PCI design handbook. PCI Journal. 2007, 52(1): 82
50 G S CheokL T Phan. Post-Installed Anchors. A Literature Review. NIST Interagency/Internal Report (NISTIR). Gaithersburg: National Institute of Standards and Technology, 1998
51 E Rolf, B Tamas. Behavior of Fasteners Loaded in Tension in Cracked Reinforced Concrete. ACI Structural Journal, 1995, 92(3): 365–379
52 R Eligehausen. Behavior, Design and Testing of Anchors in Cracked Concrete. Detroit, MI: ACI Publication, 1991
53 C Kuenzel, L J Vandeperre, S Donatello, A R Boccaccini, C Cheeseman. Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers. Journal of the American Ceramic Society, 2012, 95(10): 3270–3277
https://doi.org/10.1111/j.1551-2916.2012.05380.x
54 Z Zuhua, Y Xiao, Z Huajun, C Yue. Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 2009, 43(2): 218–223
https://doi.org/10.1016/j.clay.2008.09.003
55 C SharmaB B Jindal. Effect of variation of fly ash on the compressive strength of fly ash based geopolymer concrete. IOSR Journal of Mechanical and Civil Engineering, 2015, 42–44
56 P CongY Cheng. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering, 2021, 8(3): 283−314
57 A Bouaissi, L Y Li, M M Al Bakri Abdullah, Q B Bui. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction & Building Materials, 2019, 210: 198–209
https://doi.org/10.1016/j.conbuildmat.2019.03.202
58 P S Deb, P Nath, P K Sarker. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design, 2014, 62: 32–39
59 P NathP Sarker. Geopolymer concrete for ambient curing condition. In: The Australasian Structural Engineering Conference 2012 (ASEC 2012). In: The Australasian Structural Engineering Conference 2012 (ASEC 2012), 2021
60 Y Alrefaei, Y S Wang, J G Dai. The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes. Cement and Concrete Composites, 2019, 97: 166–174
https://doi.org/10.1016/j.cemconcomp.2018.12.027
61 S Yousefi Oderji, B Chen, M R Ahmad, S F A Shah. Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production, 2019, 225: 1–10
https://doi.org/10.1016/j.jclepro.2019.03.290
62 J Ren, H Sun, Q Li, Z Li, X Zhang, Y Wang, L Li, F Xing. A comparison between alkali-activated slag/fly ash binders prepared with natural seawater and deionized water. Journal of the American Ceramic Society, 2022, 105(9): 5929–5943
https://doi.org/10.1111/jace.18515
63 J Xie, O Kayali. Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers. Construction & Building Materials, 2016, 122: 36–42
https://doi.org/10.1016/j.conbuildmat.2016.06.067
64 A M Rashad. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for civil engineer. Construction & Building Materials, 2013, 47: 29–55
https://doi.org/10.1016/j.conbuildmat.2013.04.011
65 C Bilim, O Karahan, C D Atiş, S Ilkentapar. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Materials & Design, 2013, 44: 540–547
https://doi.org/10.1016/j.matdes.2012.08.049
66 T T Nguyen, C I Goodier, S A Austin. Factors affecting the slump and strength development of geopolymer concrete. Construction & Building Materials, 2020, 261: 119945
https://doi.org/10.1016/j.conbuildmat.2020.119945
67 S Saha, C Rajasekaran. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Construction & Building Materials, 2017, 146: 615–620
https://doi.org/10.1016/j.conbuildmat.2017.04.139
68 G Mathew, B M Issac. Effect of molarity of sodium hydroxide on the aluminosilicate content in laterite aggregate of laterised geopolymer concrete. Journal of Building Engineering, 2020, 32: 101486
https://doi.org/10.1016/j.jobe.2020.101486
69 N A M MortarH KamarudinR RafizaT MeorM Rosnita. Compressive strength of fly ash geopolymer concrete by varying sodium hydroxide molarity and aggregate to binder ratio. In: IOP Conference Series: Materials Science and Engineering. Philadelphia, PE: IOP Publishing, 2020
70 A Krishna Rao, D R Kumar. Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Materials Today: Proceedings, 2020, 27: 1768–1773
https://doi.org/10.1016/j.matpr.2020.03.682
71 H E Elyamany, A E M Abd Elmoaty, A M Elshaboury. Setting time and 7-day strength of geopolymer mortar with various binders. Construction & Building Materials, 2018, 187: 974–983
https://doi.org/10.1016/j.conbuildmat.2018.08.025
72 M T Ghafoor, Q S Khan, A U Qazi, M N Sheikh, M N S Hadi. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Construction & Building Materials, 2021, 273: 121752
https://doi.org/10.1016/j.conbuildmat.2020.121752
73 G Huang, K Yang, Y Sun, Z Lu, X Zhang, L Zuo, Y Feng, R Qian, Y Qi, Y Ji, Z Xu. Influence of NaOH content on the alkali conversion mechanism in MSWI bottom ash alkali-activated mortars. Construction & Building Materials, 2020, 248: 118582
https://doi.org/10.1016/j.conbuildmat.2020.118582
74 M Tuyan, Ö Andiç-Çakir, K Ramyar. Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer. Composites. Part B, Engineering, 2018, 135: 242–252
https://doi.org/10.1016/j.compositesb.2017.10.013
75 A M Fernandez-Jimenez, A Palomo, C Lopez-Hombrados. Engineering properties of alkali-activated fly ash concrete. ACI Materials Journal, 2006, 103(2): 106
76 N Muhammad, S Baharom, N Amirah, M Ghazali, N Alias. Effect of heat curing temperatures on fly ash-based geopolymer concrete. International Journal of Engineering & Technology, 2019, 8(1.2): 15–19
77 B B Jindal, D Parveen, D Singhal, A Goyal. Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete. Transactions of the Indian Ceramic Society, 2017, 76(4): 258–265
https://doi.org/10.1080/0371750X.2017.1412837
78 B A Tayeh, A M Zeyad, I S Agwa, M Amin. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 2021, 15: e00673
https://doi.org/10.1016/j.cscm.2021.e00673
79 F A Memon, M F Nuruddin, S Demie, N Shafiq. Effect of curing conditions on strength of fly ash-based self-compacting geopolymer concrete. International Journal of Civil and Environmental Engineering, 2011, 5(8): 342–345
80 P Nath, P K Sarker. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction & Building Materials, 2017, 130: 22–31
https://doi.org/10.1016/j.conbuildmat.2016.11.034
81 Y I A Aisheh, D S Atrushi, M H Akeed, S Qaidi, B A Tayeh. Influence of steel fibers and microsilica on the mechanical properties of ultra-high-performance geopolymer concrete (UHP-GPC). Case Studies in Construction Materials, 2022, 17: e01245
https://doi.org/10.1016/j.cscm.2022.e01245
82 S H G Mousavinejad, M F Gashti. Effects of alkaline solution to binder ratio on fracture parameters of steel fiber reinforced heavyweight geopolymer concrete. Theoretical and Applied Fracture Mechanics, 2021, 113: 102967
https://doi.org/10.1016/j.tafmec.2021.102967
83 A Karimipour, J de Brito. Influence of polypropylene fibres and silica fume on the mechanical and fracture properties of ultra-high-performance geopolymer concrete. Construction & Building Materials, 2021, 283: 122753
https://doi.org/10.1016/j.conbuildmat.2021.122753
84 J AldredJ Day. Is geopolymer concrete a suitable alternative to traditional concrete. In: Proceedings of the 37th Conference on Our World in Concrete & Structures. Singapore: CI-Premier Pte, 2012
85 H Le Minh, S Khatir, M Abdel Wahab, T Cuong-Le. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. Journal of Building Engineering, 2021, 44: 103239
https://doi.org/10.1016/j.jobe.2021.103239
86 D ErikssonT Gasch. FEM-modeling of Reinforced Concrete and Verification of the Concrete Material Models Available in ABAQUS. Stockholm: Royal Institute of Technology, 2010
87 Z Xu, Y Huang, R Liang. Numerical simulation of lap-spliced ultra-high-performance concrete beam based on bond–slip. Buildings, 2022, 12(8): 1257
https://doi.org/10.3390/buildings12081257
88 M Smith. ABAQUS/Standard User’s Manual, Version 6.9, 2009
89 B Alfarah, F López-Almansa, S Oller. New methodology for calculating damage variables evolution in plastic damage model for RC structures. Engineering Structures, 2017, 132: 70–86
https://doi.org/10.1016/j.engstruct.2016.11.022
90 G D Nguyen, A M Korsunsky. Development of an approach to constitutive modelling of concrete: Isotropic damage coupled with plasticity. International Journal of Solids and Structures, 2008, 45(20): 5483–5501
https://doi.org/10.1016/j.ijsolstr.2008.05.029
91 CEB-FIP. Model Code 2010. Switzerland: Comite Euro-International du Beton, 2010
92 D A Hordijk. Tensile and tensile fatigue behaviour of concrete—Experiments, modeling and analyses. Heron, 1992, 37(1): 3–79
93 D Phillips, Z Binsheng. Direct tension tests on notched and un-notched plain concrete specimens. Magazine of Concrete Research, 1993, 45(162): 25–35
https://doi.org/10.1680/macr.1993.45.162.25
94 T Karmokar, A Mohyeddin, J Lee. Tensile behaviour of cast-in headed anchors in ambient-temperature cured geopolymer concrete. Engineering Structures, 2022, 266: 114643
https://doi.org/10.1016/j.engstruct.2022.114643
95 Z P Bažant, B H Oh. Crack band theory for fracture of concrete. Materiales de Construcción, 1983, 16(3): 155–177
96 A Hillerborg, M Modéer, P E Petersson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6(6): 773–781
https://doi.org/10.1016/0008-8846(76)90007-7
97 D XenosP Grassl. Modelling the failure of reinforced concrete with nonlocal and crack band approaches using the damage-plasticity model CDPM2. Finite Elements in Analysis and Design, 2016, 117–118: 11–20
98 A S Genikomsou, M A Polak. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 2015, 98: 38–48
https://doi.org/10.1016/j.engstruct.2015.04.016
99 Y Sümer, M Aktaş. Defining parameters for concrete damage plasticity model. Challenge Journal of Structural Mechanics, 2015, 1(3): 149–155
100 M Szczecina, A Winnicki. Selected aspects of computer modeling of reinforced concrete structures. Archives of Civil Engineering, 2016, 62(1): 51–64
101 S Zheng, Y Liu, Y Liu, C Zhao. Experimental and parametric study on the pull-out resistance of a notched perfobond shear connector. Applied Sciences, 2019, 9(4): 764
https://doi.org/10.3390/app9040764
102 R Malm. Predicting shear type crack initiation and growth in concrete with non-linear finite element method. Dissertation for the Doctoral Degree. Stockholm: KTH Royal Institute of Technology, 2009
103 A Wosatko, A Winnicki, M A Polak, J Pamin. Role of dilatancy angle in plasticity-based models of concrete. Archives of Civil and Mechanical Engineering, 2019, 19(4): 1268–1283
https://doi.org/10.1016/j.acme.2019.07.003
104 Z P Bažant. Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics, 1984, 110(4): 518–535
https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518
105 J OžboltR EligehausenH W Reinhardt. Size effect on the concrete cone pull-out load. International Journal of Fracture, 1999, 391–404
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed