Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2024, Vol. 18 Issue (11): 1794-1814   https://doi.org/10.1007/s11709-024-1126-7
  本期目录
Estimation of the axial capacity of high-strength concrete-filled steel tube columns using artificial neural network, random forest, and extreme gradient boosting approaches
Payam SARIR1, Anat RUANGRASSAMEE1(), Mitsuyasu IWANAMI2
. Center of Excellence in Earthquake Engineering and Vibration, Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
. Infrastructure Management Laboratory, Department of Civil Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
 全文: PDF(2978 KB)   HTML
Abstract

The study aims to develop machine learning-based mechanisms that can accurately predict the axial capacity of high-strength concrete-filled steel tube (CFST) columns. Precisely predicting the axial capacity of a CFST column is always challenging for engineers. Using artificial neural networks (ANNs), random forest (RF), and extreme gradient boosting (XG-Boost), a total of 165 experimental data sets were analyzed. The selected input parameters included the steel tensile strength, concrete compressive strength, tube diameter, tube thickness, and column length. The results indicated that the ANN and RF demonstrated a coefficient of determination (R2) value of 0.965 and 0.952 during the training and 0.923 and 0.793 during the testing phase. The most effective technique was the XG-Boost due to its high efficiency, optimizing the gradient boosting, capturing complex patterns, and incorporating regularization to prevent overfitting. The outstanding R2 values of 0.991 and 0.946 during the training and testing were achieved. Due to flexibility in model hyperparameter tuning and customization options, the XG-Boost model demonstrated the lowest values of root mean square error and mean absolute error compared to the other methods. According to the findings, the diameter of CFST columns has the greatest impact on the output, while the column length has the least influence on the ultimate bearing capacity.

Key wordsartificial neural network    extreme gradient boosting    random forest    concrete-filled steel tube    machine learning
收稿日期: 2023-12-21      出版日期: 2024-11-28
Corresponding Author(s): Anat RUANGRASSAMEE   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2024, 18(11): 1794-1814.
Payam SARIR, Anat RUANGRASSAMEE, Mitsuyasu IWANAMI. Estimation of the axial capacity of high-strength concrete-filled steel tube columns using artificial neural network, random forest, and extreme gradient boosting approaches. Front. Struct. Civ. Eng., 2024, 18(11): 1794-1814.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-024-1126-7
https://academic.hep.com.cn/fsce/CN/Y2024/V18/I11/1794
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Ref. # fc (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (kN)
[3] 1 77 149 447 2.96 308 1781
2 80.3 301 903 2.96 279 5540
3 85.1 450 1350 2.96 279 11665
4 77 122 366 4.54 576 2100
5 77 238 714 4.54 507 5578
6 85.1 360 1080 4.54 525 11505
7 77 108 324 6.47 853 2713
8 77 222 666 6.47 843 7304
9 85.1 337 1011 6.47 823 13776
[75] 10 48.3 165 562.5 2.82 363.3 1759
11 48.3 190 658 1.52 306.1 1841
12 56.4 165 581 2.82 363.3 2040
13 56.4 190 655.5 1.94 256.4 2338
14 80.2 190 658.5 1.52 306.1 2870
15 56.4 190 661.5 1.13 185.7 1862
16 74.7 190 657.5 0.86 210.7 2433
17 56.4 190 664.5 0.86 210.7 1940
18 77.1 165 571 2.82 363.3 2608
19 77.1 190 656 1.94 256.4 3083
20 77.1 190 658 1.52 306.1 2830
21 77.1 190 662.5 1.13 185.7 2630
22 108 190 661.5 1.13 185.7 3220
23 77.1 190 664 0.86 210.7 2553
[9] 24 70 159.8 2000 5.01 283 1650
25 71 159.7 2500 5.2 281 1562
26 73 159.8 3000 5.1 276 1468
27 74 160.1 3500 4.98 276 1326
28 71 160.2 4000 5.02 281 1231
29 99 160.3 2000 5.03 281 2000
30 100 159.8 2500 5.01 275 1818
31 101 159.7 3000 4.97 275 1636
32 106 159.6 3500 4.98 270 1454
33 102 159.8 4000 4.97 270 1333
[76] 34 93.6 114.57 300 3.99 343 1308
35 97.2 114.26 300 3.93 343 1359
36 104.9 115.04 300 4.92 365 1787
37 57.6 115.02 300.5 5.02 365 1413
38 57.6 114.49 299.3 3.75 343 1038
[76] 39 57.6 114.29 300 3.75 343 1067
40 98.9 114.54 300 3.84 343 1359
41 98.9 114.37 299.5 3.85 343 1182
[77] 42 48.3 165 562.5 2.82 363.3 1759
43 48.3 190 658 1.52 306.1 1841
44 56.4 165 581 2.82 363.3 2040
45 56.4 190 655.5 1.94 256.4 2338
46 80.2 190 658.5 1.52 306.1 2870
47 56.4 190 661.5 1.13 185.7 1862
48 74.7 190 657.5 0.86 210.7 2433
49 56.4 190 664.5 0.86 210.7 1940
50 77.1 165 571 1.82 363.3 2608
51 77.1 190 656 1.94 256.4 3083
52 77.1 190 658 1.52 306.1 2830
53 77.1 190 662 1.13 185.7 2630
54 108 190 661 1.13 185.7 3220
55 77.1 190 664 0.86 210.7 2553
56 51.3 101.5 304.5 3.03 371 859
57 51.3 101.9 305.7 3.03 371 926
58 46.7 216.4 649.2 6.61 452 4283
59 52.2 318.3 954.9 10.37 335 9297
60 64.5 159 650 4.8 433 2210
61 64.5 159 650 4.8 433 2210
62 64.5 159 650 4.8 433 2240
63 93.8 159 650 5 390 2970
64 93.8 159 650 6.8 402 3410
65 93.8 159 650 10 355 3400
66 95.8 168.6 645 3.9 363 3339
67 158.46 164.2 652 2.5 377 3501
68 158.46 189 756 3 398 4837
69 165.49 168.6 648 3.9 363 4216
70 167.87 169 645 4.8 399 4330
71 158.75 168.7 645 5.2 405 4751
72 151.91 168.8 650 5.7 452 4930
73 158.75 168.1 645 8.1 409 5254
74 67.94 165 500 2.81 350 2160
75 67.94 165 500 2.76 350 2250
76 56.99 114.3 342.9 3.35 287.33 995.7
77 86.21 114.3 342.9 3.35 287.33 1242.2
78 102.43 114.3 342.9 3.35 287.33 1610.6
79 56.99 114.3 342.9 6 342.95 1425.3
80 86.21 114.3 342.9 6 342.95 1673.9
[77] 81 102.43 114.3 342.9 6 342.95 1943.4
82 43.92 108 324 4 336 1235
83 164.35 114.3 200 6.3 428 2866
84 164.35 114.3 200 6.3 428 2595
[77] 85 43.5 165.2 200 3.7 366 1676.42
86 58 165.2 200 3.7 366 2094.15
87 81.6 165.2 200 3.7 366 2511.3
88 43.5 165.2 200 3.7 366 1737.94
89 58 165.2 200 3.7 366 2221.62
90 81.6 165.2 200 3.7 366 2922.24
[86] 91 48.3 165 562.5 2.82 363.3 1759
92 48.3 190 658 1.52 306.1 1841
93 56.4 165 581 2.82 363.3 2040
94 56.4 190 655.5 1.94 256.4 2338
95 56.4 190 661.5 1.13 185.7 1862
96 56.4 190 664.5 0.86 210.7 1940
97 57 114.3 342.9 3.35 287.3 995.7
98 57 114.3 342.9 6 343 1425.3
99 51.3 101.5 304.5 3.03 371 859
100 51.3 101.9 305.7 3.03 371 926
101 46.7 216.4 649.2 6.61 452 4283
102 52.2 318.3 954.9 10.37 335 9297
103 80.2 190 658.5 1.52 306.1 2870
104 74.7 190 657.5 0.86 210.7 2433
105 77.1 165 571 2.82 363.3 2608
106 77.1 190 656 1.94 256.4 3083
107 77.1 190 658 1.52 306.1 2830
108 77.1 190 662 1.13 185.7 2630
109 108 190 661 1.13 185.7 3220
110 77.1 190 664 0.86 210.7 2553
111 64.5 159 650 4.8 433 2210
112 64.5 159 650 4.8 433 2210
113 64.5 159 650 4.8 433 2240
114 93.8 159 650 5 390 2970
115 93.8 159 650 6.8 402 3410
116 93.8 159 650 10 355 3400
117 86.2 114.3 342.9 3.35 287.3 1242.2
118 102.4 114.3 342.9 3.35 287.3 1610.6
119 86.2 114.3 342.9 6 343 1673.9
120 102.4 114.3 342.9 6 343 1943.4
121 67.9 165 500 2.81 350 2160
122 67.9 165 500 2.76 350 2250
[86] 123 95.8 168.6 645 3.9 363 3339
124 158.5 164.2 652 2.5 377 3501
125 158.5 189 756 3 398 4837
126 165.5 168.6 648 3.9 363 4216
127 167.9 169 645 4.8 399 4330
128 158.7 168.7 645 5.2 405 4751
129 151.9 168.8 650 5.7 452 4930
130 158.7 168.1 645 8.1 409 5254
131 164.4 114.3 200 6.3 428 2866
132 185.8 152.4 548.5 5 445.9 3997.5
133 182.8 152.4 540.7 5 445.9 4224
134 188.1 152.4 553 6.3 373.4 3692.8
135 185.7 152.4 554.7 6.3 373.4 3808
136 178.4 152.4 552.7 6.3 373.4 4033
137 170 152.4 551.9 8.8 392.6 4200.8
138 185.7 152.4 559.7 8.8 392.6 4288.5
139 178.8 152.4 549.8 8.8 392.6 4354.1
140 57 114.3 571.5 3.35 287.3 937
141 57 114.3 800.1 3.35 287.3 932.9
142 57 114.3 571.5 6 343 1389.3
143 57 114.3 800.1 6 343 1244.4
144 57 114.3 1143 6 343 1141.3
145 86.2 114.3 571.5 3.35 287.3 1281.4
146 86.2 114.3 800.1 3.35 287.3 1206.5
147 86.2 114.3 1143 3.35 287.3 1200
148 102.4 114.3 571.5 3.35 287.3 1598.9
149 102.4 114.3 800.1 3.35 287.3 1513.5
150 102.4 114.3 1143 3.35 287.3 1481.2
151 86.2 114.3 571.5 6 343 1564.7
152 86.2 114.3 800.1 6 343 1509.3
153 86.2 114.3 1143 6 343 1389.1
154 102.4 114.3 571.5 6 343 1827.1
155 102.4 114.3 800.1 6 343 1788.9
156 102.4 114.3 1143 6 343 1613.5
157 180.9 152.4 949.7 5 445.9 3383.4
158 185.8 152.4 951.3 5 445.9 3724.1
159 182.8 152.4 950.5 5 445.9 3995.7
160 188.1 152.4 948.5 6.3 373.4 3861.1
161 185.7 152.4 947.3 6.3 373.4 3535.3
162 178.4 152.4 940.2 6.3 373.4 3584.7
163 170 152.4 942.9 8.8 392.6 3919.9
164 185.7 152.4 951.3 8.8 392.6 4178.7
165 178.8 152.4 943.8 8.8 392.6 4099.8
Tab.1  
ParameterMinimumMaximumAverageStandard deviationQuartile-1 (Q1)Quartile-2 (Q2)Quartile-3 (Q3)Quartile-4 (Q4)
fc (MPa)43.5188.194.3842.645880.2102.4188.1
D (mm)101.5450161.6247.92114.49159.8190450
L (mm)2004000752.98636540.7650664.54000
t (mm)0.8610.374.22.192.823.9610.37
fy (MPa)185.7853346.3599.51287.3343390853
Pexp (kN)859137762802.451910.7516362250341013776.00
Tab.2  
Fig.5  
Fig.6  
Model Equation a) No.
ACI [91] Pu=fyAs+0.85×fcAc (12)
AISC [92] Pu=fyAs+0.95×fcAc (13)
GB-50936 [93] Pu=(As+Ac)fsc, fsc=(1.212+Bθ+Cθ2)fc, θ=fyAsfcAc,B=0.176fy+0.974,C=?0.104fc14.4+0.031 (14)
Giakoumelis and Lam [8] Pu=fyAs+1.3×fcAc (15)
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Model RMSE (MPa) MAE (MPa) MAPE R2 R
ANN 377.1240 291.4370 0.1418 0.9618 0.9807
RF 516.8553 191.1098 0.0530 0.9324 0.9656
XG Boost 356.5420 199.3449 0.0666 0.9866 0.9933
ACI [91] 684.2258 548.2901 0.2601 0.9479 0.9736
AISC [92] 554.7114 417.1157 0.1842 0.9442 0.9706
GB-50936 [93] 803.6852 443.0902 0.1572 0.8625 0.9287
Giakoumelis and Lam [8] 1048.6103 663.6813 0.3690 0.7613 0.8725
Tab.4  
Fig.13  
Fig.14  
1 Q V Vu, V H Truong, H T Thai. Machine learning-based prediction of CFST columns using gradient tree boosting algorithm. Composite Structures, 2021, 259: 113505
https://doi.org/10.1016/j.compstruct.2020.113505
2 N E Shanmugam, B Lakshmi. State of the art report on steel–concrete composite columns. Journal of Constructional Steel Research, 2001, 57(10): 1041–1080
https://doi.org/10.1016/S0143-974X(01)00021-9
3 K Sakino, H Nakahara, S Morino, I Nishiyama. Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 2004, 130(2): 180–188
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180
4 K M A Hossain. Axial load behaviour of thin-walled composite columns. Composites Part B-Engineering, 2003, 34(8): 715–725
https://doi.org/10.1016/S1359-8368(03)00100-8
5 M Lachemi, K M A Hossain, V B Lambros. Self-consolidating concrete filled steel tube columns—Design equations for confinement and axial strength. Structural Engineering and Mechanics, 2006, 22(5): 541–562
https://doi.org/10.12989/sem.2006.22.5.541
6 M V Chitawadagi, M C Narasimhan, S M Kulkarni. Axial strength of circular concrete-filled steel tube columns—DOE approach. Journal of Constructional Steel Research, 2010, 66(10): 1248–1260
https://doi.org/10.1016/j.jcsr.2010.04.006
7 L H Han. Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 2002, 58(3): 353–372
https://doi.org/10.1016/S0143-974X(01)00059-1
8 G Giakoumelis, D Lam. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 2004, 60(7): 1049–1068
https://doi.org/10.1016/j.jcsr.2003.10.001
9 J Zeghiche, K Chaoui. An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 2005, 61(1): 53–66
https://doi.org/10.1016/j.jcsr.2004.06.006
10 Nardin S De, A Lúcia. Axial load behaviour of concrete-filled steel tubular columns. Proceedings—Institution of Civil Engineers, 2007, 160(1): 13–22
11 T Y Song, L H Han, H X Yu. Concrete filled steel tube stub columns under combined temperature and loading. Journal of Constructional Steel Research, 2010, 66(3): 369–384
https://doi.org/10.1016/j.jcsr.2009.10.010
12 S M A N R Abadi, M Mehrabi, J P Meyer. Prediction and optimization of condensation heat transfer coefficients and pressure drops of R134a inside an inclined smooth tube. International Journal of Heat and Mass Transfer, 2018, 124: 953–966
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.027
13 B K R Prasad, H Eskandari, B V V Reddy. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Construction & Building Materials, 2009, 23(1): 117–128
https://doi.org/10.1016/j.conbuildmat.2008.01.014
14 M Ahmadi, H Naderpour, A Kheyroddin. ANN model for predicting the compressive strength of circular steel-confined concrete. International Journal of Civil Engineering, 2017, 15(2): 213–221
https://doi.org/10.1007/s40999-016-0096-0
15 E Güneyisi. Axial compressive strength of square and rectangular CFST columns using recycled aggregate concrete with low to high recycled aggregate replacement ratios. Construction & Building Materials, 2023, 367: 130319
https://doi.org/10.1016/j.conbuildmat.2023.130319
16 S Jayalekshmi, S Sankar, A Goel. Empirical approach for determining axial strength of circular concrete filled steel tubular columns. Journal of The Institution of Engineers: Series A, 2018, 99(2): 257–268
17 M Y Lai, J C Ho. Effect of continuous spirals on uni-axial strength and ductility of CFST columns. Journal of Constructional Steel Research, 2015, 104: 235–249
https://doi.org/10.1016/j.jcsr.2014.10.007
18 L He, Y Zhao, S Lin. Experimental study on axially compressed circular CFST columns with improved confinement effect. Journal of Constructional Steel Research, 2018, 140: 74–81
https://doi.org/10.1016/j.jcsr.2017.10.025
19 A Memarzadeh, H Sabetifar, M Nematzadeh. A comprehensive and reliable investigation of axial capacity of Sy-CFST columns using machine learning-based models. Engineering Structures, 2023, 284: 115956
https://doi.org/10.1016/j.engstruct.2023.115956
20 M Nematzadeh, S Fazli. The effect of active and passive confining pressure on compressive behavior of STCC and CFST. Advances in Concrete Constrution, 2020, 9(2): 161–171
21 Z Rahmani, M Naghipour, M Nematzadeh. Parametric study on prestressed concrete-encased CFST subjected to bending using nonlinear finite element modeling. Asian Journal of Civil Engineering, 2021, 22(3): 529–549
https://doi.org/10.1007/s42107-020-00330-3
22 A Haghinejada, M Nematzadeh. Three-dimensional finite element analysis of compressive behavior of circular steel tube-confined concrete stub columns by new confinement relationships. Latin American Journal of Solids and Structures, 2016, 13(5): 916–944
https://doi.org/10.1590/1679-78252631
23 V Afroughsabet, L Biolzi, T Ozbakkaloglu. High-performance fiber-reinforced concrete: A review. Journal of Materials Science, 2016, 51(14): 6517–6551
https://doi.org/10.1007/s10853-016-9917-4
24 L H Chen, P Fakharian, D R Eidgahee, M Haji, A M A Arab, Y Nouri. Axial compressive strength predictive models for recycled aggregate concrete filled circular steel tube columns using ANN, GEP, and MLR. Journal of Building Engineering, 2023, 77: 107439
https://doi.org/10.1016/j.jobe.2023.107439
25 E Li, N Zhang, B Xi, J Zhou, X Gao. Compressive strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient boosting technique. Frontiers of Structural and Civil Engineering, 2023, 17(9): 1310–1325
https://doi.org/10.1007/s11709-023-0997-3
26 P Fakharian, D Rezazadeh Eidgahee, M Akbari, H Jahangir, A Ali Taeb. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures, 2023, 47: 1790–1802
https://doi.org/10.1016/j.istruc.2022.12.007
27 N Ghatasheh, I Altaharwa, K Aldebei. Modified genetic algorithm for feature selection and hyper parameter optimization: Case of XGBoost in Spam Prediction. IEEE Access, 2022, 10: 84365–84383
https://doi.org/10.1109/ACCESS.2022.3196905
28 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computational Methods in Applied Mathematics, 2020, 362: 112790
29 Z Yu, F Ding, C S Cai. Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 2007, 63(2): 165–174
https://doi.org/10.1016/j.jcsr.2006.03.009
30 M Aghaabbasi, M Ali, M Jasiński, Z Leonowicz, T Novák. On hyperparameter optimization of machine learning methods using a Bayesian optimization algorithm to predict work travel mode choice. IEEE Access, 2023, 11: 19762–19774
https://doi.org/10.1109/ACCESS.2023.3247448
31 H V T Mai, M H Nguyen, S H Trinh, H B Ly. Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete. Frontiers of Structural and Civil Engineering, 2023, 17(2): 284–305
https://doi.org/10.1007/s11709-022-0901-6
32 M X Xiong, J Y R Liew, Y Wang, D X Xiong, B L Lai. Effects of coarse aggregates on physical and mechanical properties of C170/185 ultra-high strength concrete and compressive behaviour of CFST columns. Construction & Building Materials, 2020, 240: 117967
https://doi.org/10.1016/j.conbuildmat.2019.117967
33 W Chen, P Sarir, X N Bui, H Nguyen, M M Tahir, D J Armaghani. Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Structural and Multidisciplinary Optimization, 2020, 36(3): 1101–1115
34 G Ganesh Prabhu, M C Sundarraja. Behaviour of concrete filled steel tubular (CFST) short columns externally reinforced using CFRP strips composite. Construction & Building Materials, 2013, 47: 1362–1371
https://doi.org/10.1016/j.conbuildmat.2013.06.038
35 H NaderpourM ShareiP FakharianM. A Heravi. Shear strength prediction of reinforced concrete shear wall using ANN, GMDH-NN and GEP. Journal of Soft Computing in Civil Engineering, 2022, 6(1): 66–87
36 D Rezazadeh Eidgahee, H Jahangir, N Solatifar, P Fakharian, M Rezaeemanesh. Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Computing & Applications, 2022, 34(20): 17289–17314
https://doi.org/10.1007/s00521-022-07382-3
37 H Jahangir, M Khatibinia, M Kavousi. Application of contourlet transform in damage localization and severity assessment of prestressed concrete slabs. Soft Computing, 2021, 5(2): 39–67
38 Z Liu, Z Zhu, J Gao, C Xu. Forecast Methods for Time Series Data: A Survey. IEEE Access, 2021, 9: 91896–91912
https://doi.org/10.1109/ACCESS.2021.3091162
39 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87: 104225
https://doi.org/10.1016/j.euromechsol.2021.104225
40 M Zarringol, H T Thai, S Thai, V Patel. Application of ANN to the design of CFST columns. Structures, 2020, 28: 2203–2220
https://doi.org/10.1016/j.istruc.2020.10.048
41 S İpek, E Güneyisi, E M Güneyisi. Data-driven models for prediction of peak strength of R-CFST circular columns subjected to axial loading. Structures, 2022, 46: 1863–1880
https://doi.org/10.1016/j.istruc.2022.10.137
42 N T Ngo, T P T Pham, H A Le, Q T Nguyen, T T N Nguyen. Axial strength prediction of steel tube confined concrete columns using a hybrid machine learning model. Structures, 2022, 36: 765–780
https://doi.org/10.1016/j.istruc.2021.12.054
43 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Engineering with Computers, 2022, 38(6): 5423–5444
https://doi.org/10.1007/s00366-022-01633-6
44 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
45 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media. Engineering with Computers, 2022, 38(6): 5173–5198
https://doi.org/10.1007/s00366-021-01586-2
46 H W Guo, X Y Zhuang, N Alajlan, T Rabczuk. Physics-informed deep learning for three-dimensional transient heat transfer analysis of functionally graded materials. Computational Mechanics, 2023, 72(3): 513–524
https://doi.org/10.1007/s00466-023-02287-x
47 A R Ghanizadeh, A Delaram, P Fakharian, D J Armaghani. Developing predictive models of collapse settlement and coefficient of stress release of sandy-gravel soil via evolutionary polynomial regression. Applied Sciences, 2022, 12(19): 9986
https://doi.org/10.3390/app12199986
48 A R Ghanizadeh, A Ghanizadeh, P G Asteris, P Fakharian, D J Armaghani. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transportation Geotechnics, 2023, 38: 100906
https://doi.org/10.1016/j.trgeo.2022.100906
49 S Shahi, S Mousavi, K Hosseini. Simulation of pan evaporation rate by ANN artificial intelligence model in Damghan region. Journal of Soft Computing in Civil Engineering, 2021, 5: 75–87
50 Z Liu, A Zhang. Sampling for big data profiling: A survey. IEEE Access, 2020, 8: 72713–72726
https://doi.org/10.1109/ACCESS.2020.2988120
51 W Gao, J Zhao, J Fan, H You, Z Wang. A theoretical model for predicting mechanical properties of circular concrete-filled steel tube short columns. Structures, 2022, 45: 572–585
https://doi.org/10.1016/j.istruc.2022.09.040
52 Y Sharifi, M Hosainpoor. A predictive model based ANN for compressive strength assessment of the mortars containing metakaolin. Journal of Soft Computing in Civil Engineering, 2020, 4(2): 1–12
https://doi.org/10.22115/scce.2020.214444.1157
53 A Khademi, K Behfarnia, T K Šipoš, I Miličević. The use of machine learning models in estimating the compressive strength of recycled brick aggregate concrete. Computational Engineering and Physical Modeling, 2021, 4(4): 1–25
54 A Sarkar, M M Khan, M K Singh, A Noorwali, C Chakraborty, S K Pani. Artificial neural synchronization using nature inspired whale optimization. IEEE Access, 2021, 9: 16435–16447
https://doi.org/10.1109/ACCESS.2021.3052884
55 M S Barkhordari, D J Armaghani, P Fakharian. Ensemble machine learning models for prediction of flyrock due to quarry blasting. International Journal of Environmental Science and Technology, 2022, 19(9): 8661–8676
https://doi.org/10.1007/s13762-022-04096-w
56 C Wang, T M Chan. Machine learning (ML) based models for predicting the ultimate strength of rectangular concrete-filled steel tube (CFST) columns under eccentric loading. Engineering Structures, 2023, 276: 115392
https://doi.org/10.1016/j.engstruct.2022.115392
57 M Z Naser, S Thai, H T Thai. Evaluating structural response of concrete-filled steel tubular columns through machine learning. Journal of Building Engineering, 2021, 34: 101888
https://doi.org/10.1016/j.istruc.2021.12.054
58 R V Silva, J de Brito, R K Dhir. The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 2015, 19(7): 825–849
https://doi.org/10.1080/19648189.2014.974831
59 M E A Ben Seghier, X Z Gao, J Jafari-Asl, D K Thai, S Ohadi, N T Trung. Modeling the nonlinear behavior of ACC for SCFST columns using experimental-data and a novel evolutionary-algorithm. Structures, 2021, 30: 692–709
https://doi.org/10.1016/j.istruc.2021.01.036
60 H Naderpour, A H Rafiean, P Fakharian. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. Journal of Building Engineering, 2018, 16: 213–219
https://doi.org/10.1016/j.jobe.2018.01.007
61 W Abbass, M I Khan, S Mourad. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction & Building Materials, 2018, 168: 556–569
https://doi.org/10.1016/j.conbuildmat.2018.02.164
62 H T Thai. Machine learning for structural engineering: A state-of-the-art review. Structures, 2022, 38: 448–491
https://doi.org/10.1016/j.istruc.2022.02.003
63 J Zhou, X Shi, K Du, X Qiu, X Li, H S Mitri. Feasibility of random-forest approach for prediction of ground settlements induced by the construction of a shield-driven tunnel. International Journal of Geomechanics, 2017, 17(6): 04016129
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817
64 J Zhou, M Koopialipoor, B R Murlidhar, S A Fatemi, M M Tahir, D J Armaghani, C Q Li. Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance. Natural Resources Research, 2019, 29(2): 625–639
65 H Q Guo, J Zhou, M Koopialipoor, D J Armaghani, M M Tahir. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting. Engineering with Computers, 2019, 37(1): 173–186
66 H Harandizadeh, D Jahed Armaghani, M Khari. A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Structural and Multidisciplinary Optimization, 2019, 37(1): 685–700
67 M Khandelwal, A Marto, SA Fatemi, M Ghoroqi, D J Armaghani, T N Singh, O Tabrizi. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Structural and Multidisciplinary Optimization, 2018, 34(2): 307–317
68 Y Xie, C Ning, L Sun. The twenty-first century of structural engineering research: A topic modeling approach. Structures, 2022, 35: 577–590
https://doi.org/10.1016/j.istruc.2021.11.018
69 P G Asteris, V Plevris. Anisotropic masonry failure criterion using artificial neural networks. Neural Computing & Applications, 2017, 28(8): 2207–2229
https://doi.org/10.1007/s00521-016-2181-3
70 J T Hancock, T M Khoshgoftaar. CatBoost for big data: An interdisciplinary review. Journal of Big Data, 2020, 7(1): 94
https://doi.org/10.1186/s40537-020-00369-8
71 H C Frey, S R Patil. Identification and review of sensitivity analysis methods. Risk Analysis, 2002, 22(3): 553–578
https://doi.org/10.1111/0272-4332.00039
72 A Shrestha, A Mahmood. Review of deep learning algorithms and architectures. IEEE Access, 2019, 7: 53040–53065
https://doi.org/10.1109/ACCESS.2019.2912200
73 P G Asteris, M Nikoo. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Computing & Applications, 2019, 31(9): 4837–4847
https://doi.org/10.1007/s00521-018-03965-1
74 D H H Phan, V I Patel, H Al Abadi, H T Thai. Analysis and design of eccentrically compressed ultra-high-strength slender CFST circular columns. Structures, 2020, 27: 2481–2499
https://doi.org/10.1016/j.istruc.2020.08.037
75 M D O’Shea, R Q Bridge. Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering, 2000, 126(11): 1295–1303
https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295
76 L H Han, G H Yao. Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. Journal of Constructional Steel Research, 2003, 59(12): 1455–1475
77 A Le Hoang, E Fehling. Numerical study of circular steel tube confined concrete (STCC) stub columns. Journal of Constructional Steel Research, 2017, 136: 238–255
78 G S R Reddy, M Bolla, M L Patton, D Adak. Comparative study on structural behaviour of circular and square section—Concrete Filled Steel Tube (CFST) and Reinforced Cement Concrete (RCC) stub column. Structures, 2021, 29: 2067–2081
https://doi.org/10.1016/j.istruc.2020.12.078
79 D Jahed Armaghani, M Koopialipoor, A Marto, S Yagiz. Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 779–789
https://doi.org/10.1016/j.jrmge.2019.01.002
80 M Koopialipoor, H Tootoonchi, D Jahed Armaghani, E Tonnizam Mohamad, A Hedayat. Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6347–6360
https://doi.org/10.1007/s10064-019-01538-7
81 H Moayedi, D Jahed Armaghani. Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Engineering with Computers, 2018, 34(2): 347–356
https://doi.org/10.1007/s00366-017-0545-7
82 Q Wu, Z She, H Yuan. Experimental study of UHPC-encased CFST stub columns under axial compression. Structures, 2021, 32: 433–447
https://doi.org/10.1016/j.istruc.2021.03.053
83 Z Shao, Armaghani D Jahed, Bejarbaneh B Yazdani, M A Mu’azu, Mohamad E Tonnizam. Estimating the friction angle of black shale core specimens with hybrid-ANN approaches. Measurement, 2019, 145: 744–755
https://doi.org/10.1016/j.measurement.2019.06.007
84 X ShiJ ZhouB WuD HuangW Wei. Support vector machines approach to mean particle size of rock fragmentation due to bench blasting prediction. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 22(2): 432–441 (in Chinese)
85 E S Chahnasir, Y Zandi, M Shariati, E Dehghani, A Toghroli, E T Mohamed, A Shariati, M Safa, K Wakil, M Khorami. Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Structures and Systems, 2018, 22(4): 413–424
86 A Hoang, E Fehling, D K Thai, C V Nguyen. Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC. Journal of Constructional Steel Research, 2019, 153: 533–549
https://doi.org/10.1016/j.jcsr.2018.11.001
87 L Breiman. Bagging predictors. Machine Learning, 1996, 24(2): 123–140
https://doi.org/10.1007/BF00058655
88 Q Han, C Gui, J Xu, G Lacidogna. A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm. Construction & Building Materials, 2019, 226: 734–742
https://doi.org/10.1016/j.conbuildmat.2019.07.315
89 L Breiman. Random Forests. Machine Learning, 2001, 45(1): 5–32
https://doi.org/10.1023/A:1010933404324
90 M N Amin, W Ahmad, K Khan, A Ahmad, S Nazar, A A Alabdullah. Use of artificial intelligence for predicting parameters of sustainable concrete and raw ingredient effects and interactions. Materials, 2022, 15(15): 5207
https://doi.org/10.3390/ma15155207
91 Committee 318 ACI. Building Code Requirements for Structural Concrete (ACI 318M-08) and Commentary. Farmington Hills: American Concrete Institute, 2008
92 A Committee. Specification for Structural Steel Buildings (ANSI/AISC 360-10). Chicago: American Institute of Steel Construction, 2010
93 J Liew. Design Guide for Concrete Filled Tubular Members with High Strength Materials to Eurocode 4. Singapore: Research Publishing Services, 2015
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed