1. State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China 2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, eijing 100101, China 3. Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China 4. College of Life Sciences, Tsinghua University, Beijing 100084, China 5. State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China 6. Department of Health and Sports Science, Tianjin University of Sport, Tianjin 300381, China
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson’s disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.
Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A (2011) p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects . Autophagy 7:572–583
https://doi.org/10.4161/auto.7.6.14943
3
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS, Sheng M (2014) The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy . Nature 510:370–375
https://doi.org/10.1038/nature13418
4
Biskup S, Gerlach M, Kupsch A, Reichmann H, Riederer P, Vieregge P, Wullner U, Gasser T (2008) Genes associatedwith Parkinson syndrome . J Neurol 255(Suppl 5):8–17
https://doi.org/10.1007/s00415-008-5005-2
5
Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery . Autophagy 2:138–139
https://doi.org/10.4161/auto.2.2.2405
6
Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration . Nat Med 10(Suppl):S2–S9
https://doi.org/10.1038/nm1067
7
Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, Randle SJ, Wray S, Lewis PA, Houlden H (2013) The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy . Nat Neurosci 16:1257–1265
https://doi.org/10.1038/nn.3489
8
Chen Y, Dorn GW 2nd (2013) PINK1-phosphorylated mitofusin2isa Parkin receptor for culling damaged mitochondria . Science 340:471–475
https://doi.org/10.1126/science.1231031
9
Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function . Science 304:1328–1331
https://doi.org/10.1126/science.1093891
Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson’s disease . Mov Disord 25(Suppl 1):S32–S39
https://doi.org/10.1002/mds.22798
13
Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects . Nat Rev Genet 7:306–318
https://doi.org/10.1038/nrg1831
14
Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, Zheng JG, Shi Y, Siddique N, Arrat H (2011) SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis . Arch Neurol 68:1440–1446
https://doi.org/10.1001/archneurol.2011.250
15
Gegg ME, Schapira AH (2011) PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: implications for Parkinson disease pathogenesis . Autophagy 7:243–245
https://doi.org/10.4161/auto.7.2.14332
16
Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy . Hum Mol Genet19:4861–4870
https://doi.org/10.1093/hmg/ddq419
17
Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons . J Biol Chem 278:43628–43635
https://doi.org/10.1074/jbc.M308947200
Ishikawa A, Tsuji S (1996) Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism . Neurology 47:160–166
https://doi.org/10.1212/WNL.47.1.160
20
Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse . Hum Mol Genet 12:2277–2291
https://doi.org/10.1093/hmg/ddg239
21
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription . J Biol Chem 285:22576–22591
https://doi.org/10.1074/jbc.M110.118976
22
Johnson BN, Berger AK, Cortese GP, Lavoie MJ (2012) The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax . Proc Natl Acad Sci USA 109:6283–6288
https://doi.org/10.1073/pnas.1113248109
Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ (2014) PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity . J Cell Biol 205:143–153
https://doi.org/10.1083/jcb.201402104
25
Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E (2008) alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease . J Biol Chem 283:6979–6987
https://doi.org/10.1074/jbc.M710418200
26
Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 . Biochem J460:127–139
https://doi.org/10.1042/BJ20140334
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N(1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism . Nature392:605–608
https://doi.org/10.1038/33416
29
Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM (2006) Identification of far upstream element-binding protein-1 as an authentic Parkin substrate . J Biol Chem 281:16193–16196
https://doi.org/10.1074/jbc.C600041200
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagydeficient mice . Cell 131:1149–1163
https://doi.org/10.1016/j.cell.2007.10.035
32
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin . Nature 510:162–166
https://doi.org/10.1038/nature13392
33
LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin . Nat Med 11:1214–1221
https://doi.org/10.1038/nm1314
34
LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases . J Neurochem 103:2354–2368
https://doi.org/10.1111/j.1471-4159.2007.04911.x
35
Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives Parkin self-association and HECT-like E3 activity upstreamof mitochondrial binding. J CellBiol 200:163–172
https://doi.org/10.1083/jcb.201210111
36
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang CX, Burman JL, Sideris DP, Fogel AI, Youle RJ (2015) Theubiquitin kinase PINK1recruits autophagy receptorstoinduce mitophagy . Nature 524:309–314
https://doi.org/10.1038/nature14893
37
Lee JT, Wheeler TC, Li L, Chin LS (2008) Ubiquitination of alphasynuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death . Hum Mol Genet 17:906–917
https://doi.org/10.1093/hmg/ddm363
38
Lee J, Kim HR, Quinley C, Kim J, Gonzalez-Navajas J, Xavier R, Raz E(2012) Autophagy suppresses interleukin-1beta (IL-1beta) signaling by activation of p62 degradation via lysosomal and proteasomal pathways . J Biol Chem 287:4033–4040
https://doi.org/10.1074/jbc.M111.280065
39
Lesage S, Brice A(2009) Parkinson’sdisease: from monogenic forms to genetic susceptibility factors . Hum Mol Genet 18:R48–R59
https://doi.org/10.1093/hmg/ddp012
40
Li H, Guo M (2009) Protein degradation in Parkinson disease revisited: it’s complex . J Clin Investig 119:442–445
https://doi.org/10.1172/JCI38619
41
Li J, Qi W, Chen G, Feng D, Liu JH, Ma B, Zhou CQ, Mu CL, Zhang WL, Chen Q (2015) Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy . Autophagy 11:1216–1229
https://doi.org/10.1080/15548627.2015.1017180
42
Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease . J Pathol 155:9–15
https://doi.org/10.1002/path.1711550105
43
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activateslatent Parkinformitophagy . J CellBiol 189:211–221
https://doi.org/10.1083/jcb.200910140
44
Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y, Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K (2004) Transcriptional activation of p62/A170/ZIP during the formation of the aggregates: possible mechanisms and the role in Lewy body formation in Parkinson’s disease . Brain Res1012–42–51
https://doi.org/10.1016/j.brainres.2004.03.029
45
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkinis recruited selectively to impaired mitochondria and promotes their autophagy . J Cell Biol 183:795–803
https://doi.org/10.1083/jcb.200809125
46
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregatesby autophagy . J Biol Chem 282:24131–24145
https://doi.org/10.1074/jbc.M702824200
47
Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies . J Biol Chem 285:5941–5953
https://doi.org/10.1074/jbc.M109.039925
48
Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism . Proc Natl Acad Sci USA 102:2174–2179
https://doi.org/10.1073/pnas.0409598102
49
Perez FA, Curtis WR, Palmiter RD (2005) Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity . BMC neuroscience 6:71
https://doi.org/10.1186/1471-2202-6-71
Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S(2008) Monoubiquitylationof alphasynuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells . J Biol Chem 283:3316–3328
https://doi.org/10.1074/jbc.M704809200
52
Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D, Fenoglio P, Grinberg Y, Isaia G, Calvo A, Gentile S (2012) SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis . Neurology 79:1556–1562
https://doi.org/10.1212/WNL.0b013e31826e25df
53
Rue L, Lopez-Soop G, Gelpi E, Martinez-Vicente M, Alberch J, Perez-Navarro E (2013) Brain region-and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease . Neurobiol Dis 52:219–228
https://doi.org/10.1016/j.nbd.2012.12.008
54
Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization . Nature496 : 372–376
https://doi.org/10.1038/nature12043
55
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation . Mol Cell Biol 24:8055–8068
https://doi.org/10.1128/MCB.24.18.8055-8068.2004
56
Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease . Cell 144:689–702
https://doi.org/10.1016/j.cell.2011.02.010
57
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841
https://doi.org/10.1126/science.1090278
58
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies . Nature 388:839–840
https://doi.org/10.1038/42166
59
Sriram SR, Li X, Ko HS, Chung KK, Wong E, Lim KL, Dawson VL, Dawson TM (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin . Hum Mol Genet 14:2571–2586
https://doi.org/10.1093/hmg/ddi292
60
Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo . Proc Natl Acad Sci USA 108:12937–12942
https://doi.org/10.1073/pnas.1103295108
61
Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin . J Cell Biol 191:1367–1380
https://doi.org/10.1083/jcb.201007013
62
Thomas, B., and Beal, M.F. (2007). Parkinson’s disease . Human molecular genetics 16 Spec No. 2, R183–194
https://doi.org/10.1093/hmg/ddm159
63
Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization . Hum Mol Genet 20:927–940
https://doi.org/10.1093/hmg/ddq531
64
Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C (2011a) Parkin ubiquitinates Drp1 for proteasomedependent degradation:implication of dysregulated mitochondrial dynamics in Parkinson disease . J Biol Chem 286:11649–11658
https://doi.org/10.1074/jbc.M110.144238
65
Wang XN, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011b) PINK1 and Parkin target miro for phosphorylation and degradation to arrest mitochondrial motility . Cell 147:893–906
https://doi.org/10.1016/j.cell.2011.10.018
66
Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (2008) Essential role of sequestosome 1/p62 in regulating accumulation ofLys63-ubiquitinated proteins . J Biol Chem 283:6783–6789
https://doi.org/10.1074/jbc.M709496200
67
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H(2002) p62Isa common component of cytoplasmic inclusions in protein aggregation diseases . Am J Pathol 160:255–263
https://doi.org/10.1016/S0002-9440(10)64369-6