Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2017, Vol. 8 Issue (10): 713-723   https://doi.org/10.1007/s13238-017-0416-4
  本期目录
Potential coordination role between O-GlcNAcylation and epigenetics
Donglu Wu1, Yong Cai1,2,3, Jingji Jin1,2,3()
1. School of Life Sciences, Jilin University, Changchun 130012, China
2. National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China
3. Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China
 全文: PDF(858 KB)  
Abstract

Dynamic changes of the post-translational O-GlcNAc modification (O-GlcNAcylation) are controlled by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the glycoside hydrolase O-GlcNAcase (OGA) in cells. O-GlcNAcylation often occurs on serine (Ser) and threonine (Thr) residues of the specific substrate proteins via the addition of O-GlcNAc group by OGT. It has been known that O-GlcNAcylation is not only involved in many fundamental cellular processes, but also plays an important role in cancer development through various mechanisms. Recently, accumulating data reveal that O-GlcNAcylation at histones or non-histone proteins can lead to the start of the subsequent biological processes, suggesting that O-GlcNAcylation as ‘protein code’ or ‘histone code’ may provide recognition platforms or executive instructions for subsequent recruitment of proteins to carry out the specific functions. In this review, we summarize the interaction of O-GlcNAcylation and epigenetic changes, introduce recent research findings that link crosstalk between OGlcNAcylation and epigenetic changes, and speculate on the potential coordination role of O-GlcNAcylation with epigenetic changes in intracellular biological processes.

Key wordsO-GlcNAcylation    post-translational modification    histone modification    epigenetics
收稿日期: 2017-03-07      出版日期: 2017-11-06
Corresponding Author(s): Jingji Jin   
 引用本文:   
. [J]. Protein & Cell, 2017, 8(10): 713-723.
Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics. Protein Cell, 2017, 8(10): 713-723.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-017-0416-4
https://academic.hep.com.cn/pac/CN/Y2017/V8/I10/713
1 BannisterAJ, KouzaridesT (2011) Regulation of chromatin by histone modifications.Cell Res21:381–395
https://doi.org/10.1038/cr.2011.22
2 BondMR, HanoverJA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc.J Cell Biol208:869–880
https://doi.org/10.1083/jcb.201501101
3 BullenJW, BalsbaughJL, ChandaD, ShabanowitzJ, HuntDF, NeumannD, HartGW (2014) Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK).J Biol Chem289:10592–10606
https://doi.org/10.1074/jbc.M113.523068
4 BurénS, GomesAL, TeijeiroA, FawalMA, YilmazM, TummalaKS, PerezM, Rodriguez-JustoM, Campos-OlivasR, MegíasD, DjouderN (2016) Regulation of OGT by URI in response to glucose confers c-MYC-dependent survival mechanisms.Cancer Cell30:290–307
https://doi.org/10.1016/j.ccell.2016.06.023
5 ButkinareeC, CheungWD, ParkS, ParkK, BarberM, HartGW(2008) Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis.J Biol Chem283:23557–23566
https://doi.org/10.1074/jbc.M804116200
6 CaiY, JinJ, SwansonSK, ColeMD, ChoiSH, FlorensL, WashburnMP, ConawayJW, ConawayRC (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex.J Biol Chem285:4268–4672
https://doi.org/10.1074/jbc.C109.087981
7 CaldwellSA, JacksonSR, ShahriariKS, LynchTP, SethiG, WalkerS, VossellerK, ReginatiMJ (2010) Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1.Oncogene29:2831–2842
https://doi.org/10.1038/onc.2010.41
8 CapotostiF, GuernierS, LammersF, WaridelP, CaiY, JinJ, ConawayJW, ConawayRC, HerrW (2011) O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1.Cell144:376–388
https://doi.org/10.1016/j.cell.2010.12.030
9 CasseyPJ (1995) Protein lipidation in cell signaling.Science268:221–225
https://doi.org/10.1126/science.7716512
10 CharoensuksaiP, KuhnP, WangL, ShererN, XuW (2015) O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity.Biochem. J.466:587–599
https://doi.org/10.1042/BJ20141072
11 ChenQ, YuX (2016) OGT restrains the expansion of DNA damage signaling.Nucleic Acids Res44:9266–9278
https://doi.org/10.1093/nar/gkw663
12 ChenQ, ChenY, BianC, FujikiR, YuX(2013) TET2 promotes histone O-GlcNAcylation during gene transcription.Nature493:561–564
https://doi.org/10.1038/nature11742
13 ChoiHS, ChoiBY, ChoYY, MizunoH, KangBS, BodeAM, DongZ (2005) Phosphorylation of Histone H3 at Serine 10 is Indispensable for Neoplastic Cell Transformation.Cancer Res65:5818–5827
https://doi.org/10.1158/0008-5472.CAN-05-0197
14 ChouTY, HartGW, DangCV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas.J Biol Chem270:18961–18965
https://doi.org/10.1074/jbc.270.32.18961
15 ChuCS, LoPW, YehYH, HsuPH, PengSH, TengYC, KangML, WongCH, JuanLJ (2014) O-GlcNAcylation regulates EZH2 protein stability and function.Proc Natl Acad Sci USA111:1355–1360
https://doi.org/10.1073/pnas.1323226111
16 ComtesseN, MaldenerE, MeeseE (2001) Identification of a nuclear variant of MGEA5: a cytoplasmic hyaluronidase and a beta-Nacetylglucosaminidase.Biochem Biophys Res Commun283:634–640
https://doi.org/10.1006/bbrc.2001.4815
17 CopelandRJ, BullenJW, HartGW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity.Am J Physiol Endocrinol Metab295:E17–E28
https://doi.org/10.1152/ajpendo.90281.2008
18 de QueirozRM, MadanR, ChienJ, DiasWB, SlawsonC (2016) Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.J Biol Chem291:18897–18914
https://doi.org/10.1074/jbc.M116.734533
19 DelhommeauF, DupontS, Della ValleV, JamesC, TrannoyS, MasséA, KosmiderO, Le CouedicJP, RobertF, AlberdiA, LécluseY, PloI, DreyfusFJ, MarzacC, CasasevallN, LacombeC, RomanaSP, DessenP, SoulierJ, ViquiéF, FontenayM, VainchenkerW, BernardOA (2009) Mutation in TET2 in myeloid cancers.N Engl J Med360:2289–2301
https://doi.org/10.1056/NEJMoa0810069
20 DeplusR, DelatteB, SchwinnMK, DefranceM, MéndezJ, MurphyN, DawsonMA, VolkmarM, PutmansP, CalonneE, ShihAH, LevineRL, BernardO, MercherT, SolaryE, UrhM, DanielsDL, FuksF (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGTand SET1/COMPASS.EMBO J32:645–655
https://doi.org/10.1038/emboj.2012.357
21 DingX, JiangW, ZhouP, LiuL, WanX, YuanX, WangX, ChenM, ChenJ, YangJ, KongC, LiB, PengC, WongCC, HouF, ZhangY (2015) Mixed Lineage Leukemia 5 (MLL5) Protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin specific protease 7 (USP7).PLoS ONE10: e0145023
https://doi.org/10.1371/journal.pone.0145023
22 FerrerCM, LuTY, BacigalupaZA, KatsetosCD, SinclairDA, ReginatoMJ (2017) O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway.Oncogene36:559–569
https://doi.org/10.1038/onc.2016.228
23 FongJJ, NguyenBL, BridgerR, MedranoEE, WellsL, PanS, SifersRN (2005) Beta-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3.J Biol Chem287:12195–12203
https://doi.org/10.1074/jbc.M111.315804
24 FuX, JinL, WangX, LuoA, HuJ, ZhengX, TsarkWM, RiggsAD, KuHT, HuangW (2013) MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation.Proc Natl Acad Sci USA110:17892–17897
https://doi.org/10.1073/pnas.1317397110
25 FujikiR, HashibaW, SekineH, YokoyamaA, ChikanishiT, ItoS, ImaiY, KimJ, HeHH, IgarashiK, KannoJ, OhtakeF, KitagawaH, RoederRG, BrownM, KatoS (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination.Nature480:557–560
https://doi.org/10.1038/nature10656
26 GalloM, CoutinhoFJ, VannerRJ, GaydenT, MackSC, MurisonA, RemkeM, LiR, TakayamaN, DesaiK, LeeL, LanX, ParkNI, Barsyte-LovejoyD, SmilD, SturmD, KushidaMM, HeadR, CusimanoMD, BernsteinM, ClarkeID, DickJE, PfisterSM, RichJN, ArrowsmithCH, TaylorMD, JabadoN, Bazett-JonesDP, LupienM, DirksPB (2015) MLL5 orchestrates a cancer selfrenewal state by repressing the histone variant H3.3 and globally reorganizing chromatin.Cancer Cell28:715–729
https://doi.org/10.1016/j.ccell.2015.10.005
27 GambettaMC, OktabaK, MüllerJ (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression.Science325:93–96
https://doi.org/10.1126/science.1169727
28 GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001a) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845
https://doi.org/10.1074/jbc.M010420200
29 GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001b) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845
https://doi.org/10.1074/jbc.M010420200
30 GerholdCB, GasserSM (2014) INO80 and SWR complexes: relating structure to function in chromatin remodeling.Trends Cell Biol24:619–631
https://doi.org/10.1016/j.tcb.2014.06.004
31 GuY, MiW, GeY, LiuH, FanQ, HanC, YangJ, HanF, LuX, YuW (2010) GlcNAcylation plays an essential role in breast cancer metastasis.Cancer Res70:6344–6351
https://doi.org/10.1158/0008-5472.CAN-09-1887
32 GuY, GaoJ, HanC, ZhangX, LiuH, MaL, SunX, YuW (2014) OGlcNAcylation is increased in prostate cancer tissues and enhances malignancy of prostate cancer cells.Mol. Med. Rep.10:897–904
https://doi.org/10.3892/mmr.2014.2269
33 HaC, LimK (2015) O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.Biochem Biophys Res Commun467:341–347
https://doi.org/10.1016/j.bbrc.2015.09.155
34 HanoverJA, YuS, LubasWB, ShinSH, Ragano-CaracciolaM, KochranJ, LoveDC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene.Arch Biochem Biophys409:287–297
https://doi.org/10.1016/S0003-9861(02)00578-7
35 HanoverJA, KrauseMW, LoveDC (2012) Post-translational modifications: bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.Nat Rev Mol Cell Biol13:312–321
https://doi.org/10.1038/nrm3334
36 HardivilléS, HartGW (2012) Nutrient regulation of gene expression by O-GlcNAcylation of chromatin.Curr Opin Chem Biol33:88–94
https://doi.org/10.1016/j.cbpa.2016.06.005
37 HirosawaM, HayakawaK, YonedaC, AraiD, ShiotaH, SuzukiT, TanakaS, DohmaeN, ShiotaK (2016) Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity.Sci. Rep.6:31785
https://doi.org/10.1038/srep31785
38 InghamPW (1984) A gene that regulates the bithorax complex differentially in larval and adult cells of Drosophila.Cell37:815–823
https://doi.org/10.1016/0092-8674(84)90416-1
39 ItkonenHM, MinnerS, GuldvikIJ, SandmannMJ, TsourlakisMC, BergeV, SvindlandA, SchlommT, MillsIG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.Cancer Res73:5277–5287
https://doi.org/10.1158/0008-5472.CAN-13-0549
40 ItoS, ShenL, DaiQ, WuSC, CollinsLB, SwenbergJA, HeC, ZhangY (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science333:1300–1303
https://doi.org/10.1126/science.1210597
41 ItoR, KatsuraS, ShimadaH, TsuchiyaH, HadaM, OkumuraT, SugawaraA, YokoyamaA (2014) TET3-OGT interaction increases the stability and the presence of OGT in chromatin.Genes Cells19:52–65
https://doi.org/10.1111/gtc.12107
42 JinJ, CaiY, LiB, ConawayRC, WorkmanJL, ConawayJW, KuschT (2005) In and out: histone variant exchange in chromatin.Trends Biochem Sci30:680–687
https://doi.org/10.1016/j.tibs.2005.10.003
43 JinekM, RehwinkelJ, LazarusBD, IzaurraldeE, HanoverJA, ContiE (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.Nat Struct Mol Biol11:1001–1007
https://doi.org/10.1038/nsmb833
44 KamigaitoT, OkaneyaT, KawakuboM, ShimojoH, NishizawaO, NakayamaJ (2014) Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients.Prostate Cancer Prostatic Dis17:18–22
https://doi.org/10.1038/pcan.2013.56
45 KangKA, PiaoMJ, RyuYS, KangHK, ChangWY, KeumYS, HyunJW (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells.Oncotarget7:40594–40620
https://doi.org/10.18632/oncotarget.9745
46 KatoS, IshiiT, KouzmenkoA (2015) Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease.Bonekey. Rep.4:715
https://doi.org/10.1038/bonekey.2015.84
47 KreppelLK, HartGW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats.J Biol Chem274:32015–32022
https://doi.org/10.1074/jbc.274.45.32015
48 KreppelLK, BlombergMA, HartGW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats.J Biol Chem272:9308–9315
https://doi.org/10.1074/jbc.272.14.9308
49 KrzeslakA, FormaE, BernaciakM, RomanowiczH, BrysM (2012) Gene expression of O-GlcNAc cycling enzymes in human breast cancers.Clin Exp Med12:61–65
https://doi.org/10.1007/s10238-011-0138-5
50 LangemeijerSM, KuiperRP, BerendsM, KnopsR, AslanyanMG, MassopM, Stevens-LindersE, van HoogenP, van KesselAG, RaymakersRA, KampingEJ, VerhoefGE, VerburghE, HagemeijerA, VandenbergheP, de WitteT, van der ReijdenBA, JansenJH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes.Nat. Genet.41:838–842
https://doi.org/10.1038/ng.391
51 LängstG, ManelyteL (2015) Chromatin remodelers: from function to dysfunction.Genes6:299–324
https://doi.org/10.3390/genes6020299
52 LazarusBD, LoveDC, HanoverJA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates.Glycobiology16:415–421
https://doi.org/10.1093/glycob/cwj078
53 LazarusMB, NamY, JiangJ, SlizP, WalkerS (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate.Nature469:564–567
https://doi.org/10.1038/nature09638
54 LeeJS, ZhangZ (2016) O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence.Proc Natl Acad Sci USA113:E3213–E3220
https://doi.org/10.1073/pnas.1600509113
55 LercherL, RajR, PatelNA, PriceJ, MohammedS, RobinsonCV, SchofieldCJ, DavisBG (2015) Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation.Nat. Commun.6:7978
https://doi.org/10.1038/ncomms8978
56 LiuY, LiX, YuY, ShiJ, LiangZ, RunX, LiY, DaiCL, Grundke-IqbalI, IqbalK, LiuF, GongCX (2012) Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain.PLoS ONE7:43724
https://doi.org/10.1371/journal.pone.0043724
57 LorsbachRB, MooreJ, MathewS, RaimondiSC, MukatiraST, DowningJR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t (10;11) (q22;q23).Leukemia17:637–641
https://doi.org/10.1038/sj.leu.2402834
58 LoveDC, KochanJ, CatheyRL, ShinSH, HanoverJA (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase.J Cell Sci116:647–654
https://doi.org/10.1242/jcs.00246
59 LubasWA, HanoverJA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity.J Biol Chem275:10983–10988
https://doi.org/10.1074/jbc.275.15.10983
60 LynchTP, FerrerCM, JacksonSR, ShahriariKS, VossellerK, ReginatoMJ (2012) Critical role of O-linked beta-Nacetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.J Biol Chem287:11070–11081
https://doi.org/10.1074/jbc.M111.302547
61 MailleuxF, GélinasR, BeauloyeC, HormanS, BertrandL (2016) O-GlcNAcylation, enemy or ally during cardiac hypertrophy development?Biochim Biophys Acta1862:2232–2243
https://doi.org/10.1016/j.bbadis.2016.08.012
62 MarshallS, BacoteV, TraxingerRR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.J Biol Chem266:4706–4712
63 MazarsR, Gonzalez-de-PeredoA, CayrolC, LavigneAC, VogelJL, OrtegaN, LacroixC, GautierV, HuetG, RayA, MonsarratB, KristieTM, GirardJP (2010) The THAP-Zinc Finger Protein THAP1 Associates with Coactivator HCF-1 and O-GlcNAc Transferase, a link between DYT6 and DYT3 dystonias.J Biol Chem285:13364–13371
https://doi.org/10.1074/jbc.M109.072579
64 MiW, GuY, HanC, LiuH, FanQ, ZhangX, CongQ, YuW (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy.Biochim Biophys Acta1812:514–519
https://doi.org/10.1016/j.bbadis.2011.01.009
65 NakamuraK, KatoA, KobayashiJ, YanagiharaH, SakamotoS, OliveiraDV, ShimadaM, TauchiH, SuzukiH, TashiroS, ZouL, KomatsuK (2011) Regulation of homologous recombination by RNF20-dependent H2B ubiquitination.Mol Cell41:515–528
https://doi.org/10.1016/j.molcel.2011.02.002
66 O’DonnellN, ZacharaNE, HartGW, MarthJD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability.Mol Cell Biol224:1680–1690
https://doi.org/10.1128/MCB.24.4.1680-1690.2004
67 OnoR, TakiT, TaketaniT, TaniwakiM, KobayashiH, HayashiY (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23).Cancer Res62:4075–4080
68 PhoomakC, VaeteewoottacharnK, SawanyawisuthK, SeubwaiW, WongkhamC, SilsirivanitA, WongkhambS (2016) Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB.Sci. Rep.6:27853
https://doi.org/10.1038/srep27853
69 QiaoZ, DangC, ZhouB, LiS, ZhangW, JiangJ, ZhangJ, KongR, MaY (2012) O-linked N-acetylglucosamine transferase (OGT) is overexpressed and promotes O-linked protein glycosylation in esophageal squamous cell carcinoma.J. Biomed Res26:268–273
https://doi.org/10.7555/JBR.26.20110121
70 RickettsMD, MarmorsteinR (2016) A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone.J Mol Biol. doi:10.1016/j.jmb.2016.11.010
https://doi.org/10.1016/j.jmb.2016.11.010
71 RiuIH, ShinIS, DoSI (2008) Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli.Biochem Biophys Res Commun372:203–209
https://doi.org/10.1016/j.bbrc.2008.05.034
72 RonningenT, ShahA, OldenburgAR, VekterudK, DelbarreE, MoskaugJO, CollasP (2015) Prepatterning of differentiationdriven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B.Genome Res25:1825–1835
https://doi.org/10.1101/gr.193748.115
73 RuanHB, HanX, LiMD, SinghJP, QianK, AzarhoushS, ZhaoL, BennettAM, SamuelVT, WuJ, YatesJR, YangX (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability.Cell Metab16:226–237
https://doi.org/10.1016/j.cmet.2012.07.006
74 SacomanJL, DagdaRY, Burnham-MarusichAR, DagdaRK, BerninsonePM (2017) Mitochondrial O-GlcNAc transferase (mOGT) regulates mitochondrial structure, function and survival in HeLa cells.J Biol Chem292:4499–4518
https://doi.org/10.1074/jbc.M116.726752
75 SakabeK, HartGW (2010) O-GlcNAc Transferase Regulates Mitotic Chromatin Dynamics.J Biol Chem285:34460–34468
https://doi.org/10.1074/jbc.M110.158170
76 SakabeK, WangZ, HartGW (2010) Beta-N-acetylglucosamine (OGlcNAc) is part of the histone code. Proc Natl Acad Sci USA107:19915–19920
https://doi.org/10.1073/pnas.1009023107
77 SchurterBT, KohSS, ChenD, BunickGJ, HarpJM, HansonBL, Henschen-EdmanA, MackayDR, StallcupMR, AswadDW (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1.Biochemistry40:5747–5756
https://doi.org/10.1021/bi002631b
78 ScourzicL, MoulyE, BernardOA (2015) TET proteins and the control of cytosine demethylation in cancer.Genome Med. 7:9
https://doi.org/10.1186/s13073-015-0134-6
79 SebastianS, SreenivasP, SambasivanR, CheedipudiS, KandallaP, PavlathGK, DhawanJ (2009) MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation.Proc Natl Acad Sci USA106:4719–4724
https://doi.org/10.1073/pnas.0807136106
80 ShiFT, KimH, LuW, HeQ, LiuD, GoodellMAet al. (2013) Teneleven transloca tion 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells.J Biol Chem288:20776–20784
https://doi.org/10.1074/jbc.M113.460386
81 ShinSH, LoveDC, HanoverJA (2011) Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis.Amino Acids40:885–893
https://doi.org/10.1007/s00726-010-0719-8
82 SlawsonC, LakshmananT, KnappS, HartGW (2008) A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.Mol Biol Cell19:4130–4140
https://doi.org/10.1091/mbc.E07-11-1146
83 TefferiA, PardananiA, LimKH, Abdel-WahabO, LashoTL, PatelJ, GangatN, FinkeCM, SchwagerS, MullallyA, LiCY, HansonCA, MesaR, BernardO, DelhommeauF, VainchenkerW, GillilandDG, LevineRL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.Leukemia23:905–911
https://doi.org/10.1038/leu.2009.47
84 TolemanC, PatersonAJ, WhisenhuntTR, KudlowJE (2004) Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities.J Biol Chem279:53665–53673
https://doi.org/10.1074/jbc.M410406200
85 TrapannoneR, MariappaD, FerenbachAT, van AaltenDM (2016) Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins.Biochem. J.473:1693–1702
https://doi.org/10.1042/BCJ20160092
86 Van HooserA, GoodrichDW, AllisCD, BrinkleyBR, ManciniMA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation.J Cell Sci111:3497–3506
87 VellaP, ScelfoA, JammulaS, ChiacchieraF, WilliamsK, CuomoA, RobertoA, ChristensenJ, BonaldiT, HelinK, PasiniD (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.Mol Cell49:645–656
https://doi.org/10.1016/j.molcel.2012.12.019
88 WellsL, HartGW (2003) O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar.FEBS Lett546:154–158
https://doi.org/10.1016/S0014-5793(03)00641-0
89 WilliamsK, ChristensenJ, PedersenMT, JohansenJV, CloosPA, RappsilberJ, HelinK (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.Nature473:343–348
https://doi.org/10.1038/nature10066
90 WilliamsK, ChristensenJ, HelinK (2012) DNA methylation: TET proteins-guardians of CpG islands?EMBO Rep13:28–35
https://doi.org/10.1038/embor.2011.233
91 WuH, D’AlessioAC, ItoS, XiaK, WangZ, CuiK, ZhaoK, SunYE, ZhangY (2011) Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.Nature473:389–393
https://doi.org/10.1038/nature09934
92 YangWH, KimJE, NamHW, JuJW, KimHS, KimYS, ChoJW (2006) Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability.Nat Cell Biol8:1074–1083
https://doi.org/10.1038/ncb1470
93 YildirimO, LiR, HungJH, ChenPB, DongX, EeLS, WengZ, RandoOJ, FazzioTG (2011) Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells.Cell147:1498–1510
https://doi.org/10.1016/j.cell.2011.11.054
94 ZhangS, RocheK, NasheuerHP, LowndesNF (2011) Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.J Biol Chem286:37483–37495
https://doi.org/10.1074/jbc.M111.284885
95 ZhuQ, ZhouL, YangZ, LaiM, XieH, WuL, XingC, ZhangF, ZhengS (2012) O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation.Med Oncol29:985–993
https://doi.org/10.1007/s12032-011-9912-1
96 ZhuX, LiD, ZhangZ, ZhuW, LiW, ZhaoJ, XingX, HeZ, WangS, WangF, MaL, BaiQ, ZengX, LiJ, GaoC, XiaoY, WangQ, ChenL, ChenW (2016a) Persistent phosphorylation at specific H3 serine residues involved in chemical carcinogen-induced cell transformation.Carcinog, Mol. doi:10.1002/mc.22605
https://doi.org/10.1002/mc.22605
97 ZhuG, TaoT, ZhangD, LiuX, QiuH, HanL, XuZ, XiaoY, ChengC, ShenA (2016b) O-GlcNAcylation of histone deacetylase-1 in hepatocellular carcinoma promotes cancer progression.Glycobiology26:820–833
https://doi.org/10.1093/glycob/cww025
98 ZippoA, SerafiniR, RocchigianiM, PennacchiniS, KrepelovaA, OlivieroS (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation.Cell138:1122–1136
https://doi.org/10.1016/j.cell.2009.07.031
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed