Potential coordination role between O-GlcNAcylation and epigenetics
Donglu Wu1, Yong Cai1,2,3, Jingji Jin1,2,3()
1. School of Life Sciences, Jilin University, Changchun 130012, China 2. National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun 130012, China 3. Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, Jilin University, Changchun 130012, China
Dynamic changes of the post-translational O-GlcNAc modification (O-GlcNAcylation) are controlled by O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) and the glycoside hydrolase O-GlcNAcase (OGA) in cells. O-GlcNAcylation often occurs on serine (Ser) and threonine (Thr) residues of the specific substrate proteins via the addition of O-GlcNAc group by OGT. It has been known that O-GlcNAcylation is not only involved in many fundamental cellular processes, but also plays an important role in cancer development through various mechanisms. Recently, accumulating data reveal that O-GlcNAcylation at histones or non-histone proteins can lead to the start of the subsequent biological processes, suggesting that O-GlcNAcylation as ‘protein code’ or ‘histone code’ may provide recognition platforms or executive instructions for subsequent recruitment of proteins to carry out the specific functions. In this review, we summarize the interaction of O-GlcNAcylation and epigenetic changes, introduce recent research findings that link crosstalk between OGlcNAcylation and epigenetic changes, and speculate on the potential coordination role of O-GlcNAcylation with epigenetic changes in intracellular biological processes.
ChoiHS, ChoiBY, ChoYY, MizunoH, KangBS, BodeAM, DongZ (2005) Phosphorylation of Histone H3 at Serine 10 is Indispensable for Neoplastic Cell Transformation.Cancer Res65:5818–5827 https://doi.org/10.1158/0008-5472.CAN-05-0197
14
ChouTY, HartGW, DangCV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas.J Biol Chem270:18961–18965 https://doi.org/10.1074/jbc.270.32.18961
ComtesseN, MaldenerE, MeeseE (2001) Identification of a nuclear variant of MGEA5: a cytoplasmic hyaluronidase and a beta-Nacetylglucosaminidase.Biochem Biophys Res Commun283:634–640 https://doi.org/10.1006/bbrc.2001.4815
17
CopelandRJ, BullenJW, HartGW (2008) Cross-talk between GlcNAcylation and phosphorylation: roles in insulin resistance and glucose toxicity.Am J Physiol Endocrinol Metab295:E17–E28 https://doi.org/10.1152/ajpendo.90281.2008
18
de QueirozRM, MadanR, ChienJ, DiasWB, SlawsonC (2016) Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells.J Biol Chem291:18897–18914 https://doi.org/10.1074/jbc.M116.734533
19
DelhommeauF, DupontS, Della ValleV, JamesC, TrannoyS, MasséA, KosmiderO, Le CouedicJP, RobertF, AlberdiA, LécluseY, PloI, DreyfusFJ, MarzacC, CasasevallN, LacombeC, RomanaSP, DessenP, SoulierJ, ViquiéF, FontenayM, VainchenkerW, BernardOA (2009) Mutation in TET2 in myeloid cancers.N Engl J Med360:2289–2301 https://doi.org/10.1056/NEJMoa0810069
DingX, JiangW, ZhouP, LiuL, WanX, YuanX, WangX, ChenM, ChenJ, YangJ, KongC, LiB, PengC, WongCC, HouF, ZhangY (2015) Mixed Lineage Leukemia 5 (MLL5) Protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin specific protease 7 (USP7).PLoS ONE10: e0145023 https://doi.org/10.1371/journal.pone.0145023
22
FerrerCM, LuTY, BacigalupaZA, KatsetosCD, SinclairDA, ReginatoMJ (2017) O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway.Oncogene36:559–569 https://doi.org/10.1038/onc.2016.228
23
FongJJ, NguyenBL, BridgerR, MedranoEE, WellsL, PanS, SifersRN (2005) Beta-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3.J Biol Chem287:12195–12203 https://doi.org/10.1074/jbc.M111.315804
24
FuX, JinL, WangX, LuoA, HuJ, ZhengX, TsarkWM, RiggsAD, KuHT, HuangW (2013) MicroRNA-26a targets ten eleven translocation enzymes and is regulated during pancreatic cell differentiation.Proc Natl Acad Sci USA110:17892–17897 https://doi.org/10.1073/pnas.1317397110
GalloM, CoutinhoFJ, VannerRJ, GaydenT, MackSC, MurisonA, RemkeM, LiR, TakayamaN, DesaiK, LeeL, LanX, ParkNI, Barsyte-LovejoyD, SmilD, SturmD, KushidaMM, HeadR, CusimanoMD, BernsteinM, ClarkeID, DickJE, PfisterSM, RichJN, ArrowsmithCH, TaylorMD, JabadoN, Bazett-JonesDP, LupienM, DirksPB (2015) MLL5 orchestrates a cancer selfrenewal state by repressing the histone variant H3.3 and globally reorganizing chromatin.Cancer Cell28:715–729 https://doi.org/10.1016/j.ccell.2015.10.005
27
GambettaMC, OktabaK, MüllerJ (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression.Science325:93–96 https://doi.org/10.1126/science.1169727
28
GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001a) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845 https://doi.org/10.1074/jbc.M010420200
29
GaoY, WellsL, ComerFI, ParkerGJ, HartGW (2001b) Dynamic Oglycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain.J Biol Chem276:9838–9845 https://doi.org/10.1074/jbc.M010420200
30
GerholdCB, GasserSM (2014) INO80 and SWR complexes: relating structure to function in chromatin remodeling.Trends Cell Biol24:619–631 https://doi.org/10.1016/j.tcb.2014.06.004
31
GuY, MiW, GeY, LiuH, FanQ, HanC, YangJ, HanF, LuX, YuW (2010) GlcNAcylation plays an essential role in breast cancer metastasis.Cancer Res70:6344–6351 https://doi.org/10.1158/0008-5472.CAN-09-1887
32
GuY, GaoJ, HanC, ZhangX, LiuH, MaL, SunX, YuW (2014) OGlcNAcylation is increased in prostate cancer tissues and enhances malignancy of prostate cancer cells.Mol. Med. Rep.10:897–904 https://doi.org/10.3892/mmr.2014.2269
33
HaC, LimK (2015) O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.Biochem Biophys Res Commun467:341–347 https://doi.org/10.1016/j.bbrc.2015.09.155
34
HanoverJA, YuS, LubasWB, ShinSH, Ragano-CaracciolaM, KochranJ, LoveDC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene.Arch Biochem Biophys409:287–297 https://doi.org/10.1016/S0003-9861(02)00578-7
35
HanoverJA, KrauseMW, LoveDC (2012) Post-translational modifications: bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.Nat Rev Mol Cell Biol13:312–321 https://doi.org/10.1038/nrm3334
36
HardivilléS, HartGW (2012) Nutrient regulation of gene expression by O-GlcNAcylation of chromatin.Curr Opin Chem Biol33:88–94 https://doi.org/10.1016/j.cbpa.2016.06.005
37
HirosawaM, HayakawaK, YonedaC, AraiD, ShiotaH, SuzukiT, TanakaS, DohmaeN, ShiotaK (2016) Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity.Sci. Rep.6:31785 https://doi.org/10.1038/srep31785
ItkonenHM, MinnerS, GuldvikIJ, SandmannMJ, TsourlakisMC, BergeV, SvindlandA, SchlommT, MillsIG (2013) O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells.Cancer Res73:5277–5287 https://doi.org/10.1158/0008-5472.CAN-13-0549
40
ItoS, ShenL, DaiQ, WuSC, CollinsLB, SwenbergJA, HeC, ZhangY (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Science333:1300–1303 https://doi.org/10.1126/science.1210597
41
ItoR, KatsuraS, ShimadaH, TsuchiyaH, HadaM, OkumuraT, SugawaraA, YokoyamaA (2014) TET3-OGT interaction increases the stability and the presence of OGT in chromatin.Genes Cells19:52–65 https://doi.org/10.1111/gtc.12107
42
JinJ, CaiY, LiB, ConawayRC, WorkmanJL, ConawayJW, KuschT (2005) In and out: histone variant exchange in chromatin.Trends Biochem Sci30:680–687 https://doi.org/10.1016/j.tibs.2005.10.003
43
JinekM, RehwinkelJ, LazarusBD, IzaurraldeE, HanoverJA, ContiE (2004) The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.Nat Struct Mol Biol11:1001–1007 https://doi.org/10.1038/nsmb833
44
KamigaitoT, OkaneyaT, KawakuboM, ShimojoH, NishizawaO, NakayamaJ (2014) Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients.Prostate Cancer Prostatic Dis17:18–22 https://doi.org/10.1038/pcan.2013.56
45
KangKA, PiaoMJ, RyuYS, KangHK, ChangWY, KeumYS, HyunJW (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells.Oncotarget7:40594–40620 https://doi.org/10.18632/oncotarget.9745
46
KatoS, IshiiT, KouzmenkoA (2015) Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease.Bonekey. Rep.4:715 https://doi.org/10.1038/bonekey.2015.84
47
KreppelLK, HartGW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats.J Biol Chem274:32015–32022 https://doi.org/10.1074/jbc.274.45.32015
48
KreppelLK, BlombergMA, HartGW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats.J Biol Chem272:9308–9315 https://doi.org/10.1074/jbc.272.14.9308
49
KrzeslakA, FormaE, BernaciakM, RomanowiczH, BrysM (2012) Gene expression of O-GlcNAc cycling enzymes in human breast cancers.Clin Exp Med12:61–65 https://doi.org/10.1007/s10238-011-0138-5
50
LangemeijerSM, KuiperRP, BerendsM, KnopsR, AslanyanMG, MassopM, Stevens-LindersE, van HoogenP, van KesselAG, RaymakersRA, KampingEJ, VerhoefGE, VerburghE, HagemeijerA, VandenbergheP, de WitteT, van der ReijdenBA, JansenJH (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes.Nat. Genet.41:838–842 https://doi.org/10.1038/ng.391
LazarusBD, LoveDC, HanoverJA (2006) Recombinant O-GlcNAc transferase isoforms: identification of O-GlcNAcase, yes tyrosine kinase, and tau as isoform-specific substrates.Glycobiology16:415–421 https://doi.org/10.1093/glycob/cwj078
53
LazarusMB, NamY, JiangJ, SlizP, WalkerS (2011) Structure of human O-GlcNAc transferase and its complex with a peptide substrate.Nature469:564–567 https://doi.org/10.1038/nature09638
54
LeeJS, ZhangZ (2016) O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence.Proc Natl Acad Sci USA113:E3213–E3220 https://doi.org/10.1073/pnas.1600509113
55
LercherL, RajR, PatelNA, PriceJ, MohammedS, RobinsonCV, SchofieldCJ, DavisBG (2015) Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation.Nat. Commun.6:7978 https://doi.org/10.1038/ncomms8978
56
LiuY, LiX, YuY, ShiJ, LiangZ, RunX, LiY, DaiCL, Grundke-IqbalI, IqbalK, LiuF, GongCX (2012) Developmental regulation of protein O-GlcNAcylation, O-GlcNAc transferase, and O-GlcNAcase in mammalian brain.PLoS ONE7:43724 https://doi.org/10.1371/journal.pone.0043724
57
LorsbachRB, MooreJ, MathewS, RaimondiSC, MukatiraST, DowningJR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t (10;11) (q22;q23).Leukemia17:637–641 https://doi.org/10.1038/sj.leu.2402834
58
LoveDC, KochanJ, CatheyRL, ShinSH, HanoverJA (2003) Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase.J Cell Sci116:647–654 https://doi.org/10.1242/jcs.00246
59
LubasWA, HanoverJA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity.J Biol Chem275:10983–10988 https://doi.org/10.1074/jbc.275.15.10983
60
LynchTP, FerrerCM, JacksonSR, ShahriariKS, VossellerK, ReginatoMJ (2012) Critical role of O-linked beta-Nacetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis.J Biol Chem287:11070–11081 https://doi.org/10.1074/jbc.M111.302547
61
MailleuxF, GélinasR, BeauloyeC, HormanS, BertrandL (2016) O-GlcNAcylation, enemy or ally during cardiac hypertrophy development?Biochim Biophys Acta1862:2232–2243 https://doi.org/10.1016/j.bbadis.2016.08.012
62
MarshallS, BacoteV, TraxingerRR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.J Biol Chem266:4706–4712
63
MazarsR, Gonzalez-de-PeredoA, CayrolC, LavigneAC, VogelJL, OrtegaN, LacroixC, GautierV, HuetG, RayA, MonsarratB, KristieTM, GirardJP (2010) The THAP-Zinc Finger Protein THAP1 Associates with Coactivator HCF-1 and O-GlcNAc Transferase, a link between DYT6 and DYT3 dystonias.J Biol Chem285:13364–13371 https://doi.org/10.1074/jbc.M109.072579
64
MiW, GuY, HanC, LiuH, FanQ, ZhangX, CongQ, YuW (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy.Biochim Biophys Acta1812:514–519 https://doi.org/10.1016/j.bbadis.2011.01.009
O’DonnellN, ZacharaNE, HartGW, MarthJD (2004) Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability.Mol Cell Biol224:1680–1690 https://doi.org/10.1128/MCB.24.4.1680-1690.2004
67
OnoR, TakiT, TaketaniT, TaniwakiM, KobayashiH, HayashiY (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23).Cancer Res62:4075–4080
68
PhoomakC, VaeteewoottacharnK, SawanyawisuthK, SeubwaiW, WongkhamC, SilsirivanitA, WongkhambS (2016) Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB.Sci. Rep.6:27853 https://doi.org/10.1038/srep27853
69
QiaoZ, DangC, ZhouB, LiS, ZhangW, JiangJ, ZhangJ, KongR, MaY (2012) O-linked N-acetylglucosamine transferase (OGT) is overexpressed and promotes O-linked protein glycosylation in esophageal squamous cell carcinoma.J. Biomed Res26:268–273 https://doi.org/10.7555/JBR.26.20110121
70
RickettsMD, MarmorsteinR (2016) A molecular prospective for HIRA complex assembly and H3.3-specific histone chaperone.J Mol Biol. doi:10.1016/j.jmb.2016.11.010 https://doi.org/10.1016/j.jmb.2016.11.010
71
RiuIH, ShinIS, DoSI (2008) Sp1 modulates ncOGT activity to alter target recognition and enhanced thermotolerance in E. coli.Biochem Biophys Res Commun372:203–209 https://doi.org/10.1016/j.bbrc.2008.05.034
SakabeK, WangZ, HartGW (2010) Beta-N-acetylglucosamine (OGlcNAc) is part of the histone code. Proc Natl Acad Sci USA107:19915–19920 https://doi.org/10.1073/pnas.1009023107
SlawsonC, LakshmananT, KnappS, HartGW (2008) A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin.Mol Biol Cell19:4130–4140 https://doi.org/10.1091/mbc.E07-11-1146
83
TefferiA, PardananiA, LimKH, Abdel-WahabO, LashoTL, PatelJ, GangatN, FinkeCM, SchwagerS, MullallyA, LiCY, HansonCA, MesaR, BernardO, DelhommeauF, VainchenkerW, GillilandDG, LevineRL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis.Leukemia23:905–911 https://doi.org/10.1038/leu.2009.47
84
TolemanC, PatersonAJ, WhisenhuntTR, KudlowJE (2004) Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities.J Biol Chem279:53665–53673 https://doi.org/10.1074/jbc.M410406200
85
TrapannoneR, MariappaD, FerenbachAT, van AaltenDM (2016) Nucleocytoplasmic human O-GlcNAc transferase is sufficient for O-GlcNAcylation of mitochondrial proteins.Biochem. J.473:1693–1702 https://doi.org/10.1042/BCJ20160092
86
Van HooserA, GoodrichDW, AllisCD, BrinkleyBR, ManciniMA (1998) Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation.J Cell Sci111:3497–3506
87
VellaP, ScelfoA, JammulaS, ChiacchieraF, WilliamsK, CuomoA, RobertoA, ChristensenJ, BonaldiT, HelinK, PasiniD (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells.Mol Cell49:645–656 https://doi.org/10.1016/j.molcel.2012.12.019
88
WellsL, HartGW (2003) O-GlcNAc turns twenty: functional implications for post-translational modification of nuclear and cytosolic proteins with a sugar.FEBS Lett546:154–158 https://doi.org/10.1016/S0014-5793(03)00641-0
89
WilliamsK, ChristensenJ, PedersenMT, JohansenJV, CloosPA, RappsilberJ, HelinK (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.Nature473:343–348 https://doi.org/10.1038/nature10066
ZhangS, RocheK, NasheuerHP, LowndesNF (2011) Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated.J Biol Chem286:37483–37495 https://doi.org/10.1074/jbc.M111.284885
95
ZhuQ, ZhouL, YangZ, LaiM, XieH, WuL, XingC, ZhangF, ZhengS (2012) O-GlcNAcylation plays a role in tumor recurrence of hepatocellular carcinoma following liver transplantation.Med Oncol29:985–993 https://doi.org/10.1007/s12032-011-9912-1
96
ZhuX, LiD, ZhangZ, ZhuW, LiW, ZhaoJ, XingX, HeZ, WangS, WangF, MaL, BaiQ, ZengX, LiJ, GaoC, XiaoY, WangQ, ChenL, ChenW (2016a) Persistent phosphorylation at specific H3 serine residues involved in chemical carcinogen-induced cell transformation.Carcinog, Mol. doi:10.1002/mc.22605 https://doi.org/10.1002/mc.22605
97
ZhuG, TaoT, ZhangD, LiuX, QiuH, HanL, XuZ, XiaoY, ChengC, ShenA (2016b) O-GlcNAcylation of histone deacetylase-1 in hepatocellular carcinoma promotes cancer progression.Glycobiology26:820–833 https://doi.org/10.1093/glycob/cww025
98
ZippoA, SerafiniR, RocchigianiM, PennacchiniS, KrepelovaA, OlivieroS (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation.Cell138:1122–1136 https://doi.org/10.1016/j.cell.2009.07.031