Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2017, Vol. 8 Issue (11): 796-800   https://doi.org/10.1007/s13238-017-0467-6
  本期目录
The lipid droplet: A conserved cellular organelle
Congyan Zhang1,2, Pingsheng Liu1,2()
1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(651 KB)  
Abstract

The lipid droplet (LD) is a unique multi-functional organelle that contains a neutral lipid core covered with a phospholipid monolayer membrane. The LDs have been found in almost all organisms from bacteria to humans with similar shape. Several conserved functions of LDs have been revealed by recent studies, including lipid metabolism and trafficking, as well as nucleic acid binding and protection. We summarized these findings and proposed a hypothesis that the LD is a conserved organelle.

Key wordslipid droplet    conserved organelle    lipid metabolism    nucleic acid handling
收稿日期: 2017-08-10      出版日期: 2017-11-30
Corresponding Author(s): Pingsheng Liu   
 引用本文:   
. [J]. Protein & Cell, 2017, 8(11): 796-800.
Congyan Zhang, Pingsheng Liu. The lipid droplet: A conserved cellular organelle. Protein Cell, 2017, 8(11): 796-800.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-017-0467-6
https://academic.hep.com.cn/pac/CN/Y2017/V8/I11/796
1 AlvarezHM, SteinbuchelA (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol60:367–376
https://doi.org/10.1007/s00253-002-1135-0
2 BarbosaAD, SiniossoglouS (2017) Function of lipid dropletorganelle interactions in lipid homeostasis. Biochimica et Biophysica Acta.
https://doi.org/10.1016/j.bbamcr.2017.04.001
3 BartzR, ZehmerJK, ZhuM, ChenY, SerreroG, ZhaoY, LiuP (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res6:3256–3265
https://doi.org/10.1021/pr070158j
4 BobikTA, LehmanBP, YeatesTO (2015) Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol98:193–207
https://doi.org/10.1111/mmi.13117
5 CaoH, GerholdK, MayersJR, WiestMM, WatkinsSM, HotamisligilGS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell134:933–944
https://doi.org/10.1016/j.cell.2008.07.048
6 CermelliS, GuoY, GrossSP, WelteMA (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol16:1783–1795
https://doi.org/10.1016/j.cub.2006.07.062
7 ChenY, DingYF, YangL, YuJH, LiuGM, WangXM, ZhangSY, YuD, SongL, ZhangHX, ZhangCY, HuoLH, HuoCX, WangY, DuYL, ZhangHN, ZhangP, NaHM, XuSM, ZhuYX, XieZS, HeT, ZhangY, WangGL, FanZH, YangFQ, LiuHL, WangXW, ZhangXG, ZhangMQ, LiYD, SteinbuchelA, FujimotoT, CichelloS, YuJ, LiuPS (2014) Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res42:1052–1064
https://doi.org/10.1093/nar/gkt932
8 ChitrajuC, TrotzmullerM, HartlerJ, WolinskiH, ThallingerGG, LassA, ZechnerR, ZimmermannR, KofelerHC, SpenerF (2012) Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J Lipid Res53:2141–2152
https://doi.org/10.1194/jlr.M028902
9 ChughtaiAA, KassakF, KostrouchovaM, NovotnyJP, KrauseMW, SaudekV, KostrouchZ, KostrouchovaM (2015) Perilipin-related protein regulates lipid metabolism in C. elegans. PeerJ3:e1213
https://doi.org/10.7717/peerj.1213
10 CohenJC, HortonJD, HobbsHH (2011) Human fatty liver disease: old questions and new insights. Science332:1519–1523
https://doi.org/10.1126/science.1204265
11 CornejoE, AbreuN, KomeiliA (2014) Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol26:132–138
https://doi.org/10.1016/j.ceb.2013.12.007
12 DingY, YangL, ZhangS, WangY, DuY, PuJ, PengG, ChenY, ZhangH, YuJ, HangH, WuP, YangF, YangH, SteinbuchelA, LiuP (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res53:399–411
https://doi.org/10.1194/jlr.M021899
13 DvorakAM (2005) Mast cell secretory granules and lipid bodies contain the necessary machinery important for the in situ synthesis of proteins. Chem Immunol Allergy85:252–315
https://doi.org/10.1159/000086520
14 DvorakAM, MorganES, WellerPF (2003) RNA is closely associated with human mast cell lipid bodies. Histol Histopathol18:943–968
15 EdwardsMR, BernsDS, GhiorseWC, HoltSC (1968) Ultrastructure of the thermophilic blue-green alga, synechococcus lividus copeland(1). J Phycol4:283–298
https://doi.org/10.1111/j.1529-8817.1968.tb04697.x
16 FareseRV, WaltherTC (2009) Lipid droplets finally get a little R-E-SP-E-C-T. Cell139:855–860
https://doi.org/10.1016/j.cell.2009.11.005
17 FichesGN, EyreNS, AloiaAL, Van Der HoekK, Betz-StableinB, LucianiF, ChopraA, BeardMR (2016) HCV RNA traffic and association with NS5A in living cells. Virology493:60–74
https://doi.org/10.1016/j.virol.2016.02.016
18 GentzschJ, BrohmC, SteinmannE, FrieslandM, MenzelN, VieyresG, PerinPM, FrentzenA, KaderaliL, PietschmannT (2013) Hepatitis C virus p7 is critical for capsid assembly and envelopment. PLoS Pathogens9:e1003355
https://doi.org/10.1371/journal.ppat.1003355
19 HanischJ, WaltermannM, RobenekH, SteinbuchelA (2006) Eukaryotic lipid body proteins in oleogenous actinomycetes and their targeting to intracellular triacylglycerol inclusions: Impact on models of lipid body biogenesis. Appl Environ Microbiol72:6743–6750
https://doi.org/10.1128/AEM.00584-06
20 KimmelAR, BrasaemleDL, McAndrews-HillM, SztalrydC, LondosC (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res51:468–471
https://doi.org/10.1194/jlr.R000034
21 LayerenzaJP, GonzalezP, Garcia de BravoMM, PoloMP, SistiMS, Ves-LosadaA (1831) Nuclear lipid droplets: a novel nuclear domain. Biochem Biophys Acta2013:327–340
22 LiZ, ThielK, ThulPJ, BellerM, KuhnleinRP, WelteMA (2012) Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol22:2104–2113
https://doi.org/10.1016/j.cub.2012.09.018
23 LiZ, JohnsonMR, KeZ, ChenL, WelteMA (2014) Drosophila lipid droplets buffer the H2Av supply to protect early embryonic development. Curr Biol24:1485–1491
https://doi.org/10.1016/j.cub.2014.05.022
24 LiL, WalshRM, WaghV, JamesMF, BeauchampRL, ChangYS, GusellaJF, HochedlingerK, RameshV (2015) Mediator subunit Med28 is essential for mouse peri-implantation development and pluripotency. PLoS ONE10:e0140192
https://doi.org/10.1371/journal.pone.0140192
25 LiuP, YingY, ZhaoY, MundyDI, ZhuM, AndersonRG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem279:3787–3792
https://doi.org/10.1074/jbc.M311945200
26 LiuZ, LiX, GeQ, DingM, HuangX (2014) A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics41:305–313
https://doi.org/10.1016/j.jgg.2014.03.002
27 LiuL, ZhangK, SandovalH, YamamotoS, JaiswalM, SanzE, LiZ, HuiJ, GrahamBH, QuintanaA, BellenHJ (2015) Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell160:177–190
https://doi.org/10.1016/j.cell.2014.12.019
28 MartinS, PartonRG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol7:373–378
https://doi.org/10.1038/nrm1912
29 MiyanariY, AtsuzawaK, UsudaN, WatashiK, HishikiT, ZayasM, BartenschlagerR, WakitaT, HijikataM, ShimotohnoK (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol9:1089–1097
https://doi.org/10.1038/ncb1631
30 MurphyDJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res40:325–438
https://doi.org/10.1016/S0163-7827(01)00013-3
31 MurphyDJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma249:541–585
https://doi.org/10.1007/s00709-011-0329-7
32 MurphyDJ, VanceJ (1999) Mechanisms of lipid-body formation. Trends Biochem Sci24:109–115
https://doi.org/10.1016/S0968-0004(98)01349-8
33 NaH, ZhangP, ChenY, ZhuX, LiuY, LiuY, XieK, XuN, YangF, YuY, CichelloS, MakHY, WangMC, ZhangH, LiuP (2015) Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. Biochem Biophys Acta1853:2481–2491
https://doi.org/10.1016/j.bbamcr.2015.05.020
34 OhsakiY, KawaiT, YoshikawaY, ChengJ, JokitaloE, FujimotoT (2016) PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol212:29–38
https://doi.org/10.1083/jcb.201507122
35 O’MahonyF, WroblewskiK, O’ByrneSM, JiangH, ClerkinK, BenhammouJ, BlanerWS, BeavenSW (2015) Liver X receptors balance lipid stores in hepatic stellate cells through Rab18, a retinoid responsive lipid droplet protein. Hepatology62:615–626
https://doi.org/10.1002/hep.27645
36 PeramunaA, SummersML (2014) Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme. Arch Microbiol196:881–890
https://doi.org/10.1007/s00203-014-1027-6
37 PloeghHL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature448:435–438
https://doi.org/10.1038/nature06004
38 RoweER, MimmackML, BarbosaAD, HaiderA, IsaacI, OuberaiMM, ThiamAR, PatelS, SaudekV, SiniossoglouS, SavageDB (2016) Conserved amphipathic helices mediate lipid droplet targeting of perilipins 1-3. J Biol Chem291:6664–6678
https://doi.org/10.1074/jbc.M115.691048
39 SatoS, FukasawaM, YamakawaY, NatsumeT, SuzukiT, ShojiI, AizakiH, MiyamuraT, NishijimaM (2006) Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem139:921–930
https://doi.org/10.1093/jb/mvj104
40 ShiST, PolyakSJ, TuH, TaylorDR, GretchDR, LaiMMC (2002) Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology292:198–210
https://doi.org/10.1006/viro.2001.1225
41 UenoM, ShenWJ, PatelS, GreenbergAS, AzharS, KraemerFB (2012) Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res54:734–743
https://doi.org/10.1194/jlr.M033365
42 Van de MeeneAM, Hohmann-MarriottMF, VermaasWF, RobersonRW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol184:259–270
https://doi.org/10.1007/s00203-005-0027-y
43 WaltermannM, SteinbuchelA (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol187:3607–3619
https://doi.org/10.1128/JB.187.11.3607-3619.2005
44 WaltermannM, HinzA, RobenekH, TroyerD, ReicheltR, MalkusU, GallaHJ, KalscheuerR, StovekenT, von LandenbergP, SteinbuchelA (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol55:750–763
https://doi.org/10.1111/j.1365-2958.2004.04441.x
45 WanHC, MeloRC, JinZ, DvorakAM, WellerPF (2007) Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J21:167–178
https://doi.org/10.1096/fj.06-6711com
46 WangL, WangY, LiangY, LiJ, LiuY, ZhangJ, ZhangA, FuJ, JiangG (2013) Specific accumulation of lipid droplets in hepatocyte nuclei of PFOA-exposed BALB/c mice. Sci Rep3:2174
https://doi.org/10.1038/srep02174
47 WangY, ZhouXM, MaX, DuY, ZhengL, LiuP (2016) Construction of nano-droplet/adiposome and artificial lipid droplets. ACS Nano10:3312–3322
https://doi.org/10.1021/acsnano.5b06852
48 WelteMA (2015) Expanding roles for lipid droplets. Curr Biol25: R470–481
https://doi.org/10.1016/j.cub.2015.04.004
49 WolkCP (1973) Physiology and cytological chemistry blue-green algae. Bacteriol Rev37:32–101
50 YangL, DingYF, ChenY, ZhangSY, HuoCX, WangY, YuJH, ZhangP, NaHM, ZhangHN, MaYB, LiuPS (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res53:1245–1253
https://doi.org/10.1194/jlr.R024117
51 ZhangP, NaH, LiuZ, ZhangS, XueP, ChenY, PuJ, PengG, HuangX, YangF, XieZ, XuT, XuP, OuG, ZhangSO, LiuP (2012) Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics11:317–328
https://doi.org/10.1074/mcp.M111.016345
52 ZhangC, YangL, DingY, WangY, LanL, MaQ, ChiX, WeiP, ZhaoY, SteinbuchelA, ZhangH, LiuP (2017) Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun8:15979
https://doi.org/10.1038/ncomms15979
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed