Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2017, Vol. 8 Issue (11): 791-795   https://doi.org/10.1007/s13238-017-0477-4
  本期目录
Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse
Xiang Jin Kang1, Chiong Isabella Noelle Caparas2, Boon Seng Soh1,2(), Yong Fan1()
1. Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
2. Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore
 全文: PDF(223 KB)  
出版日期: 2017-11-30
Corresponding Author(s): Boon Seng Soh,Yong Fan   
 引用本文:   
. [J]. Protein & Cell, 2017, 8(11): 791-795.
Xiang Jin Kang, Chiong Isabella Noelle Caparas, Boon Seng Soh, Yong Fan. Addressing challenges in the clinical applications associated with CRISPR/Cas9 technology and ethical questions to prevent its misuse. Protein Cell, 2017, 8(11): 791-795.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-017-0477-4
https://academic.hep.com.cn/pac/CN/Y2017/V8/I11/791
1 BakondiB, LvWet al. (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther24(3):556–563
https://doi.org/10.1038/mt.2015.220
2 BaltimoreD, BergPet al. (2015) Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science348(6230):36–38
https://doi.org/10.1126/science.aab1028
3 BarrangouR, DoudnaJA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol34(9):933–941
https://doi.org/10.1038/nbt.3659
4 BikardD, EulerCWet al. (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol32 (11):1146–1150
https://doi.org/10.1038/nbt.3043
5 BosleyKS, BotchanMet al. (2015) CRISPR germline engineering—the community speaks. Nat Biotechnol33(5):478–486
https://doi.org/10.1038/nbt.3227
6 CoxDB, PlattRJet al. (2015) Therapeutic genome editing: prospects and challenges. Nat Med21(2):121–131
https://doi.org/10.1038/nm.3793
7 DongC, QuLet al. (2015) Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir Res118:110–117
https://doi.org/10.1016/j.antiviral.2015.03.015
8 FirthAL, MenonTet al. (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep12(9):1385–1390
https://doi.org/10.1016/j.celrep.2015.07.062
9 GomaaAA, KlumpeHEet al. (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio5(1):e00913–e00928
https://doi.org/10.1128/mBio.00928-13
10 HouP, ChenSet al. (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 5:15577
https://doi.org/10.1038/srep15577
11 HsuPD, LanderESet al. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell157(6):1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
12 HuZ, YuLet al. (2014) Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int2014:612823
https://doi.org/10.1155/2014/612823
13 HwangWY, FuYet al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol31(3):227–229
https://doi.org/10.1038/nbt.2501
14 KangX, HeWet al. (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet33(5):581–588
https://doi.org/10.1007/s10815-016-0710-8
15 LanphierE, UrnovFet al. (2015) Don’t edit the human germ line. Nature519(7544):410–411
https://doi.org/10.1038/519410a
16 LiC, GuanXet al. (2015)Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirusdelivered CRISPR/Cas9. J Gen Virol96(8):2381–2393
https://doi.org/10.1099/vir.0.000139
17 LiangP, XuYet al. (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6(5):363–372
https://doi.org/10.1007/s13238-015-0153-5
18 LongC, McAnallyJRet al. (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science345(6201):1184–1188
https://doi.org/10.1126/science.1254445
19 MaH, Marti-GutierrezNet al. (2017) Correction of a pathogenic gene mutation in human embryos. Nature548(7668):413–419
https://doi.org/10.1038/nature23305
20 MaederML, GersbachCA (2016) Genome-editing Technologies for Gene and Cell Therapy. Mol Ther24(3):430–446
https://doi.org/10.1038/mt.2016.10
21 NelsonCE, HakimCHet al. (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science351(6271):403–407
https://doi.org/10.1126/science.aad5143
22 OsbornMJ, GabrielRet al. (2015) Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther26(2):114–126
https://doi.org/10.1089/hum.2014.111
23 PengJ, WangYet al. (2015) Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep5:16705
https://doi.org/10.1038/srep16705
24 RodriguezE (2016) Ethical issues in genome editing using Crispr/Cas9 system. J Clin Res Bioeth7(2):266
25 SavulescuJ, PughJet al. (2015) The moral imperative to continue gene editing research on human embryos. Protein Cell6(7):476–479
https://doi.org/10.1007/s13238-015-0184-y
26 SchwankG, KooBKet al. (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell13(6):653–658
https://doi.org/10.1016/j.stem.2013.11.002
27 SvitashevS, YoungJKet al. (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol169(2):931–945
https://doi.org/10.1104/pp.15.00793
28 TangL, ZengYet al. (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics292 (3):525–533
https://doi.org/10.1007/s00438-017-1299-z
29 TebasP, SteinDet al. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med370 (10):901–910
https://doi.org/10.1056/NEJMoa1300662
30 TuZ, YangWet al. (2017) Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep7:42081
https://doi.org/10.1038/srep42081
31 VallettaS, DolatshadHet al. (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget6 (42):44061–44071
https://doi.org/10.18632/oncotarget.6392
32 WangH, La RussaMet al. (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem85:227–264
https://doi.org/10.1146/annurev-biochem-060815-014607
33 WuYLD, WangYet al. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell13(6):659–662
https://doi.org/10.1016/j.stem.2013.10.016
34 YangH, WangHet al. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell154(6):1370–1379
https://doi.org/10.1016/j.cell.2013.08.022
35 YangL, GuellMet al. (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science350(6264):1101–1104
https://doi.org/10.1126/science.aad1191
36 YinH, XueWet al. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol32 (6):551–553
https://doi.org/10.1038/nbt.2884
37 YuL, WangXet al. (2015) Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. OncoTargets Ther8:37–44
38 ZetscheB, GootenbergJSet al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell163 (3):759–771
https://doi.org/10.1016/j.cell.2015.09.038
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed