1 |
BakondiB, LvWet al. (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther24(3):556–563
https://doi.org/10.1038/mt.2015.220
|
2 |
BaltimoreD, BergPet al. (2015) Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science348(6230):36–38
https://doi.org/10.1126/science.aab1028
|
3 |
BarrangouR, DoudnaJA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol34(9):933–941
https://doi.org/10.1038/nbt.3659
|
4 |
BikardD, EulerCWet al. (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol32 (11):1146–1150
https://doi.org/10.1038/nbt.3043
|
5 |
BosleyKS, BotchanMet al. (2015) CRISPR germline engineering—the community speaks. Nat Biotechnol33(5):478–486
https://doi.org/10.1038/nbt.3227
|
6 |
CoxDB, PlattRJet al. (2015) Therapeutic genome editing: prospects and challenges. Nat Med21(2):121–131
https://doi.org/10.1038/nm.3793
|
7 |
DongC, QuLet al. (2015) Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antivir Res118:110–117
https://doi.org/10.1016/j.antiviral.2015.03.015
|
8 |
FirthAL, MenonTet al. (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep12(9):1385–1390
https://doi.org/10.1016/j.celrep.2015.07.062
|
9 |
GomaaAA, KlumpeHEet al. (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio5(1):e00913–e00928
https://doi.org/10.1128/mBio.00928-13
|
10 |
HouP, ChenSet al. (2015) Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 5:15577
https://doi.org/10.1038/srep15577
|
11 |
HsuPD, LanderESet al. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell157(6):1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
|
12 |
HuZ, YuLet al. (2014) Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int2014:612823
https://doi.org/10.1155/2014/612823
|
13 |
HwangWY, FuYet al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol31(3):227–229
https://doi.org/10.1038/nbt.2501
|
14 |
KangX, HeWet al. (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet33(5):581–588
https://doi.org/10.1007/s10815-016-0710-8
|
15 |
LanphierE, UrnovFet al. (2015) Don’t edit the human germ line. Nature519(7544):410–411
https://doi.org/10.1038/519410a
|
16 |
LiC, GuanXet al. (2015)Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirusdelivered CRISPR/Cas9. J Gen Virol96(8):2381–2393
https://doi.org/10.1099/vir.0.000139
|
17 |
LiangP, XuYet al. (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell6(5):363–372
https://doi.org/10.1007/s13238-015-0153-5
|
18 |
LongC, McAnallyJRet al. (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science345(6201):1184–1188
https://doi.org/10.1126/science.1254445
|
19 |
MaH, Marti-GutierrezNet al. (2017) Correction of a pathogenic gene mutation in human embryos. Nature548(7668):413–419
https://doi.org/10.1038/nature23305
|
20 |
MaederML, GersbachCA (2016) Genome-editing Technologies for Gene and Cell Therapy. Mol Ther24(3):430–446
https://doi.org/10.1038/mt.2016.10
|
21 |
NelsonCE, HakimCHet al. (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science351(6271):403–407
https://doi.org/10.1126/science.aad5143
|
22 |
OsbornMJ, GabrielRet al. (2015) Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther26(2):114–126
https://doi.org/10.1089/hum.2014.111
|
23 |
PengJ, WangYet al. (2015) Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep5:16705
https://doi.org/10.1038/srep16705
|
24 |
RodriguezE (2016) Ethical issues in genome editing using Crispr/Cas9 system. J Clin Res Bioeth7(2):266
|
25 |
SavulescuJ, PughJet al. (2015) The moral imperative to continue gene editing research on human embryos. Protein Cell6(7):476–479
https://doi.org/10.1007/s13238-015-0184-y
|
26 |
SchwankG, KooBKet al. (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell13(6):653–658
https://doi.org/10.1016/j.stem.2013.11.002
|
27 |
SvitashevS, YoungJKet al. (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol169(2):931–945
https://doi.org/10.1104/pp.15.00793
|
28 |
TangL, ZengYet al. (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics292 (3):525–533
https://doi.org/10.1007/s00438-017-1299-z
|
29 |
TebasP, SteinDet al. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med370 (10):901–910
https://doi.org/10.1056/NEJMoa1300662
|
30 |
TuZ, YangWet al. (2017) Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Sci Rep7:42081
https://doi.org/10.1038/srep42081
|
31 |
VallettaS, DolatshadHet al. (2015) ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget6 (42):44061–44071
https://doi.org/10.18632/oncotarget.6392
|
32 |
WangH, La RussaMet al. (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem85:227–264
https://doi.org/10.1146/annurev-biochem-060815-014607
|
33 |
WuYLD, WangYet al. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell13(6):659–662
https://doi.org/10.1016/j.stem.2013.10.016
|
34 |
YangH, WangHet al. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell154(6):1370–1379
https://doi.org/10.1016/j.cell.2013.08.022
|
35 |
YangL, GuellMet al. (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science350(6264):1101–1104
https://doi.org/10.1126/science.aad1191
|
36 |
YinH, XueWet al. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol32 (6):551–553
https://doi.org/10.1038/nbt.2884
|
37 |
YuL, WangXet al. (2015) Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. OncoTargets Ther8:37–44
|
38 |
ZetscheB, GootenbergJSet al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell163 (3):759–771
https://doi.org/10.1016/j.cell.2015.09.038
|