In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models
Xiaomeng An1, Linlin Li2, Sen Wu1()
1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China 2. State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratoryof Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
. [J]. Protein & Cell, 2019, 10(6): 450-454.
Xiaomeng An, Linlin Li, Sen Wu. In vivo tunable CRISPR mediates efficient somatic mutagenesis to generate tumor models. Protein Cell, 2019, 10(6): 450-454.
D Balboa, J Weltner, S Eurola, R Trokovic, K Wartiovaara, T Otonkoski (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5:448–459 https://doi.org/10.1016/j.stemcr.2015.08.001
2
LE Dow, J Fisher, KP O’Rourke, A Muley, ER Kastenhuber, G Livshits, DF Tschaharganeh, ND Socci, SW Lowe (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–U398 https://doi.org/10.1038/nbt.3155
3
M Iwamoto, T Bjorklund, C Lundberg, D Kirik, TJ Wandless (2010) A general chemical method to regulate protein stability in the mammalian central nervous system. Chem Biol 17:981–988 https://doi.org/10.1016/j.chembiol.2010.07.009
4
DA Kleinjan, C Wardrope, S Nga Sou, SJ Rosser (2017) Drugtunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat Commun 8:1191 https://doi.org/10.1038/s41467-017-01222-y
5
S Konermann, MD Brigham, AE Trevino, PD Hsu, M Heidenreich, L Cong, RJ Platt, DA Scott, GM Church, F Zhang (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476 https://doi.org/10.1038/nature12466
6
KI Liu, MNB Ramli, CWA Woo, YM Wang, TY Zhao, XJ Zhang, GRD Yim, BY Chong, A Gowher, MZH Chuaet al. (2016) A chemicalinducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol 12:980–987 https://doi.org/10.1038/nchembio.2179
7
J Lu, C Zhao, Y Zhao, J Zhang, Y Zhang, L Chen, Q Han, Y Ying, S Peng, R Aiet al. (2018) Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res 46:e25 https://doi.org/10.1093/nar/gkx1222
8
B Maji, CL Moore, B Zetsche, SE Volz, F Zhang, MD Shoulders, A Choudhary (2017) Multidimensional chemical control of CRISPR-Cas9. Nat Chem Biol 13:9–11 https://doi.org/10.1038/nchembio.2224
9
P Mali, LH Yang, KM Esvelt, J Aach, M Guell, JE DiCarlo, JE Norville, GM Church (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826 https://doi.org/10.1126/science.1232033
10
R Sando, K Baumgaertel, S Pieraut, N Torabi-Rander, TJ Wandless, M Mayford, A Maximov (2013) Inducible control of gene expression with destabilized Cre. Nat Methods 10:1085–1088 https://doi.org/10.1038/nmeth.2640
11
S Senturk, NH Shirole, DG Nowak, V Corbo, D Pal, A Vaughan, DA Tuveson, LC Trotman, JB Kinney, R Sordella (2017) Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nat Commun 8:1–10 https://doi.org/10.1038/ncomms14370
12
CL Xu, XL Qi, XG Du, HY Zou, F Gao, T Feng, HX Lu, SL Li, XM An, LJ Zhanget al. (2017) piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci USA 114:722–727 https://doi.org/10.1073/pnas.1615735114
13
B Zetsche, SE Volz, F Zhang (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142 https://doi.org/10.1038/nbt.3149