Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2020, Vol. 11 Issue (6): 417-432   https://doi.org/10.1007/s13238-020-00720-y
  本期目录
Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1
Jianwei Liu1,3, Mengdi Wang1, Le Sun1,3, Na Clara Pan1, Changjiang Zhang1,3, Junjing Zhang2, Zhentao Zuo1, Sheng He1, Qian Wu2,5(), Xiaoqun Wang1,3,4,6()
1. State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
5. IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
6. Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
 全文: PDF(3515 KB)  
Abstract

Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as lightsensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.

Key wordslight sensitivity    vivo-seq    patch-seq    calcium imaging in vivo    whole cell recording in vivo
收稿日期: 2019-10-07      出版日期: 2020-06-17
Corresponding Author(s): Qian Wu,Xiaoqun Wang   
 引用本文:   
. [J]. Protein & Cell, 2020, 11(6): 417-432.
Jianwei Liu, Mengdi Wang, Le Sun, Na Clara Pan, Changjiang Zhang, Junjing Zhang, Zhentao Zuo, Sheng He, Qian Wu, Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein Cell, 2020, 11(6): 417-432.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-020-00720-y
https://academic.hep.com.cn/pac/CN/Y2020/V11/I6/417
1 A Aperia, EE Akkuratov, JM Fontana, H Brismar (2016) Na+-K+- ATPase, a new class of plasma membrane receptors. Am J Physiol Cell Physiol 310:C491–495
https://doi.org/10.1152/ajpcell.00359.2015
2 S Arganda, R Guantes, GG de Polavieja (2007) Sodium pumps adapt spike bursting to stimulus statistics. Nat Neurosci 10:1467–1473
https://doi.org/10.1038/nn1982
3 C Bardy, M van den Hurk, B Kakaradov, JA Erwin, BN Jaeger, RV Hernandez, T Eames, AA Paucar, M Gorris, C Marchandet al. (2016) Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol Psychiatry 21:1573–1588
https://doi.org/10.1038/mp.2016.158
4 L Bjartmar, AD Huberman, EM Ullian, RC Renteria, X Liu, W Xu, J Prezioso, MW Susman, D Stellwagen, CC Stokeset al. (2006) Neuronal pentraxins mediate synaptic refinement in the devel- oping visual system. J Neurosci 26:6269–6281
https://doi.org/10.1523/JNEUROSCI.4212-05.2006
5 DD Bock, WC Lee, AM Kerlin, ML Andermann, G Hood, AW Wetzel, S Yurgenson, ER Soucy, HS Kim, RC Reid (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–182
https://doi.org/10.1038/nature09802
6 A Butler, P Hoffman, P Smibert, E Papalexi, R Satija (2018) Integrating single-cell transcriptomic data across different condi- tions, technologies, and species. Nat Biotechnol 36:411
https://doi.org/10.1038/nbt.4096
7 CR Cadwell, A Palasantza, X Jiang, P Berens, Q Deng, M Yilmaz, J Reimer, S Shen, M Bethge, KF Toliaset al. (2016) Electro- physiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol 34:199–203
https://doi.org/10.1038/nbt.3445
8 CR Cadwell, F Scala, S Li, G Livrizzi, S Shen, R Sandberg, X Jiang, AS Tolias (2017) Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using Patch-seq. Nat Protoc 12:2531–2553
https://doi.org/10.1038/nprot.2017.120
9 J Cang, RC Renteria, M Kaneko, X Liu, DR Copenhagen, MP Stryker (2005) Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809
https://doi.org/10.1016/j.neuron.2005.09.015
10 LMW Chalupa, JS Werner (2003) The visual neurosciences. MIT Press, Cambridge
11 S Chen, T Huang, Y Zhou, Y Han, M Xu, J Gu (2017) AfterQC: automatic filtering, trimming, error removing and quality control for fastq data. BMC Bioinform 18:80
https://doi.org/10.1186/s12859-017-1469-3
12 X Chen, K Zhang, L Zhou, X Gao, J Wang, Y Yao, F He, Y Luo, Y Yu, S Liet al. (2016) Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mecha- nisms underlying neuronal maturation. Protein Cell 7:175–186
https://doi.org/10.1007/s13238-016-0247-8
13 A Cruz-Martin, RN El-Danaf, F Osakada, B Sriram, OS Dhande, PL Nguyen, EM Callaway, A Ghosh, AD Huberman (2014) A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–361
https://doi.org/10.1038/nature12989
14 B Cubelos, CG Briz, GM Esteban-Ortega, M Nieto (2015) Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons. Dev Neurobiol 75:163–172
https://doi.org/10.1002/dneu.22215
15 W da Huang, BT Sherman, RA Lempicki (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13
https://doi.org/10.1093/nar/gkn923
16 W da Huang, BT Sherman, RA Lempicki (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57
https://doi.org/10.1038/nprot.2008.211
17 Y Ding, Y Zheng, T Liu, T Chen, C Wang, Q Sun, M Hua, T Hua (2017) Changes in GABAergic markers accompany degradation of neuronal function in the primary visual cortex of senescent rats. Sci Rep 7:14897
https://doi.org/10.1038/s41598-017-15006-3
18 A Dobin, CA Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, TR Gingeras (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
https://doi.org/10.1093/bioinformatics/bts635
19 X Fan, J Dong, S Zhong, Y Wei, Q Wu, L Yan, J Yong, L Sun, X Wang, Y Zhaoet al. (2018) Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res 28:730–745
https://doi.org/10.1038/s41422-018-0053-3
20 SW Flavell, ME Greenberg (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590
https://doi.org/10.1146/annurev.neuro.31.060407.125631
21 J Fuzik, A Zeisel, Z Mate, D Calvigioni, Y Yanagawa, G Szabo, S Linnarsson, T Harkany (2016) Integration of electrophysiolog- ical recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34:175–183
https://doi.org/10.1038/nbt.3443
22 G Gao, CS Fernandez, D Stapleton, AS Auster, J Widmer, JR Dyck, BE Kemp, LA Witters (1996) Non-catalytic beta- and gamma- subunit isoforms of the 5’-AMP-activated protein kinase. J Biol Chem 271:8675–8681
https://doi.org/10.1074/jbc.271.15.8675
23 KJ Gerber, KE Squires, JR Hepler (2016) Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol 89:273–286
https://doi.org/10.1124/mol.115.102210
24 LT Gray, Z Yao (2017) Layer-specific chromatin accessibility landscapes reveal regulatory networks in adult mouse visual cortex. Elife 6:e21883
https://doi.org/10.7554/eLife.21883
25 KM Hagihara, K Ohki (2013) Long-term down-regulation of GABA decreases orientation selectivity without affecting direction selec- tivity in mouse primary visual cortex. Front Neural Circuits 7:28
https://doi.org/10.3389/fncir.2013.00028
26 JL Herrero, MA Gieselmann, A Thiele (2017) Muscarinic and Nicotinic Contribution to Contrast Sensitivity of Macaque Area V1 Neurons. Front Neural Circuits 11:106
https://doi.org/10.3389/fncir.2017.00106
27 B Hille (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland
28 S Hrvatin, DR Hochbaum, MA Nagy, M Cicconet, K Robertson, L Cheadle, R Zilionis, A Ratner, R Borges-Monroy, AM Kleinet al. (2018) Single-cell analysis of experience-dependent transcrip- tomic states in the mouse visual cortex. Nat Neurosci 21:120–129
https://doi.org/10.1038/s41593-017-0029-5
29 F Hucho (1993) Neurotransmitter receptors. Elsevier, Amsterdam
30 B Juliandi, M Abematsu, T Sanosaka, K Tsujimura, A Smith, K Nakashima (2012) Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid. Neurosci Res 72:23–31
https://doi.org/10.1016/j.neures.2011.09.012
31 L Kaczmarek, A Chaudhuri (1997) Sensory regulation of immediate– early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237–256
https://doi.org/10.1016/S0165-0173(97)00005-2
32 PJ Kersey, JE Allen, A Allot, M Barba, S Boddu, BJ Bolt, D Carvalho- Silva, M Christensen, P Davis, C Grabmuelleret al. (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808
https://doi.org/10.1093/nar/gkx1011
33 A Kirkwood, MC Rioult, MF Bear (1996) Experience-dependent modification of synaptic plasticity in visual cortex. Nature 381:526–528
https://doi.org/10.1038/381526a0
34 SK Lam, N Yoda, R Schekman (2010) A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum. Proc Natl Acad Sci USA 107:21523–21528
https://doi.org/10.1073/pnas.1013397107
35 P Langfelder, S Horvath (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559
https://doi.org/10.1186/1471-2105-9-559
36 P Langfelder, S Horvath (2012) Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 46
https://doi.org/10.18637/jss.v046.i11
37 SH Lee, AC Kwan, S Zhang, V Phoumthipphavong, JG Flannery, SC Masmanidis, H Taniguchi, ZJ Huang, F Zhang, ES Boydenet al. (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383
https://doi.org/10.1038/nature11312
38 SJ Lee, M Wei, C Zhang, S Maxeiner, C Pak, S Calado Botelho, J Trotter, FH Sterky, TC Sudhof (2017) Presynaptic neuronal pentraxin receptor organizes excitatory and inhibitory synapses. J Neurosci 37:1062–1080
https://doi.org/10.1523/JNEUROSCI.2768-16.2016
39 WC Lee, V Bonin, M Reed, BJ Graham, G Hood, K Glattfelder, RC Reid (2016) Anatomy and function of an excitatory network in the visual cortex. Nature 532:370–374
https://doi.org/10.1038/nature17192
40 D Leifer, D Krainc, YT Yu, J McDermott, RE Breitbart, J Heng, RL Neve, B Kosofsky, B Nadal-Ginard, SA Lipton (1993) MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc Natl Acad Sci USA 90:1546–1550
https://doi.org/10.1073/pnas.90.4.1546
41 CL Li, KC Li, D Wu, Y Chen, H Luo, JR Zhao, SS Wang, MM Sun, YJ Lu, YQ Zhonget al. (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26:967
https://doi.org/10.1038/cr.2016.90
42 J Li, J Zhang, M Wang, J Pan, X Chen, X Liao (2017a) Functional imaging of neuronal activity of auditory cortex by using Cal-520 in anesthetized and awake mice. Biomed Opt Express 8:2599–2610
https://doi.org/10.1364/BOE.8.002599
43 S Li, L Wang, X Tie, K Sohya, X Lin, A Kirkwood, B Jiang (2017b) Brief novel visual experience fundamentally changes synaptic plasticity in the mouse visual cortex. J Neurosci 37:9353–9360
https://doi.org/10.1523/JNEUROSCI.0334-17.2017
44 Y Liao, GK Smyth, W Shi (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930
https://doi.org/10.1093/bioinformatics/btt656
45 J Liu, W Liu, L Yang, Q Wu, H Zhang, A Fang, L Li, X Xu, L Sun, J Zhanget al. (2017) The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding. Cell Stem Cell 21(635–649):e638
https://doi.org/10.1016/j.stem.2017.08.013
46 MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
47 R Madabhushi, F Gao, AR Pfenning, L Pan, S Yamakawa, J Seo, R Rueda, T Phan, H Yamakawa, PC Paoet al. (2015) Activity- induced DNA breaks govern the expression of neuronal early- response genes. Cell 161:1592–1605
https://doi.org/10.1016/j.cell.2015.05.032
48 G Malagon, T Miki, I Llano, E Neher, A Marty (2016) Counting vesicular release events reveals binomial release statistics at single glutamatergic synapses. J Neurosci 36:4010–4025
https://doi.org/10.1523/JNEUROSCI.4352-15.2016
49 NJ Mangini, AL Pearlman (1980) Laminar distribution of receptive field properties in the primary visual cortex of the mouse. J Comp Neurol 193:203–222
https://doi.org/10.1002/cne.901930114
50 DJ McCarthy, KR Campbell, AT Lun, QF Wills (2017) Scater: pre- processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33:1179–1186
https://doi.org/10.1093/bioinformatics/btw777
51 E Meisami, PS Timiras (1974) Influence of early visual deprivation on regional activity of brain ATPases in developing rats. J Neu- rochem 22:725–729
https://doi.org/10.1111/j.1471-4159.1974.tb04286.x
52 RF Moroni, F Inverardi, MC Regondi, A Watakabe, T Yamamori, R Spreafico, C Frassoni (2009) Expression of layer-specific markers in the adult neocortex of BCNU-Treated rat, a model of cortical dysplasia. Neuroscience 159:682–691
https://doi.org/10.1016/j.neuroscience.2008.12.064
53 CM Niell, MP Stryker (2008) Highly selective receptive fields in mouse visual cortex. J Neurosci 28:7520–7536
https://doi.org/10.1523/JNEUROSCI.0623-08.2008
54 RJ O’Brien, S Kamboj, MD Ehlers, KR Rosen, GD Fischbach, RL Huganir (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078
https://doi.org/10.1016/S0896-6273(00)80624-8
55 H Okuno (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186
https://doi.org/10.1016/j.neures.2010.12.007
56 P Paoletti, C Bellone, Q Zhou (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400
https://doi.org/10.1038/nrn3504
57 X Pei, TR Vidyasagar, M Volgushev, OD Creutzfeldt (1994) Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci 14:7130–7140
https://doi.org/10.1523/JNEUROSCI.14-11-07130.1994
58 KA Pelkey, E Barksdale, MT Craig, X Yuan, M Sukumaran, GA Vargish, RM Mitchell, MS Wyeth, RS Petralia, R Chittajalluet al. (2015) Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85:1257–1272
https://doi.org/10.1016/j.neuron.2015.02.020
59 S Picelli, OR Faridani, AK Bjorklund, G Winberg, S Sagasser, R Sandberg (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181
https://doi.org/10.1038/nprot.2014.006
60 K Plossl, M Royer, S Bernklau, NN Tavraz, T Friedrich, J Wild, BHF Weber, U Friedrich (2017) Retinoschisin is linked to retinal Na/K-ATPase signaling and localization. Mol Biol Cell 28:2178–2189
https://doi.org/10.1091/mbc.e17-01-0064
61 I Sarria, C Orlandi, MA McCall, RG Gregg, KA Martemyanov (2016) Intermolecular interaction 2between anchoring subunits specify subcellular targeting and function of RGS proteins in retina ON- bipolar neurons. J Neurosci 36:2915–2925
https://doi.org/10.1523/JNEUROSCI.3833-15.2016
62 H Sato, Y Hata, H Masui, T Tsumoto (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780
https://doi.org/10.1152/jn.1987.58.4.765
63 GM Sia, JC Beique, G Rumbaugh, R Cho, PF Worley, RL Huganir (2007) Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron 55:87–102
https://doi.org/10.1016/j.neuron.2007.06.020
64 AM Sillito, JA Kemp (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res 289:143–155
https://doi.org/10.1016/0006-8993(83)90015-X
65 CE Stephany, LL Chan, SN Parivash, HM Dorton, M Piechowicz, S Qiu, AW McGee (2014) Plasticity of binocularity and visual acuity are differentially limited by nogo receptor. J Neurosci 34:11631–11640
https://doi.org/10.1523/JNEUROSCI.0545-14.2014
66 CE Stephany, MG Frantz, AW McGee (2016a) Multiple roles for nogo receptor 1 in visual system plasticity. Neuroscientist 22:653–666
https://doi.org/10.1177/1073858415614564
67 CE Stephany, T Ikrar, C Nguyen, X Xu, AW McGee (2016b) Nogo receptor 1 confines a disinhibitory microcircuit to the critical period in visual cortex. J Neurosci 36:11006–11012
https://doi.org/10.1523/JNEUROSCI.0935-16.2016
68 C Stosiek, O Garaschuk, K Holthoff, A Konnerth (2003) In vivo two- photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324
https://doi.org/10.1073/pnas.1232232100
69 RA Thomas, J Gibon, CXQ Chen, S Chierzi, VG Soubannier, S Baulac, P Seguela, K Murai, PA Barker (2018) The nogo receptor ligand LGI1 regulates synapse number and synaptic activity in hippocampal and cortical neurons. eNeuro.
https://doi.org/10.1523/ENEURO.0185-18.2018
70 SF Traynelis, LP Wollmuth, CJ McBain, FS Menniti, KM Vance, KK Ogden, KB Hansen, H Yuan, SJ Myers, R Dingledine (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496
https://doi.org/10.1124/pr.109.002451
71 QF Wu, L Yang, S Li, Q Wang, XB Yuan, X Gao, L Bao, X Zhang (2012)Fibroblast growth factor 13 is a microtubule-stabilizing protein regulating neuronal polarization and migration. Cell 149:1549–1564
https://doi.org/10.1016/j.cell.2012.04.046
72 HA Zariwala, L Madisen, KF Ahrens, A Bernard, ES Lein, AR Jones, H Zeng (2011) Visual tuning properties of genetically identified layer 2/3 neuronal types in the primary visual cortex of cre- transgenic mice. Front Syst Neurosci 4:162
https://doi.org/10.3389/fnsys.2010.00162
73 S Zhong, S Zhang, X Fan, Q Wu, L Yan, J Dong, H Zhang, L Li, L Sun, N Panet al. (2018) A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555:524
https://doi.org/10.1038/nature25980
[1] PAC-0417-19431-WXQ_suppl_1 Download
[2] PAC-0417-19431-WXQ_suppl_2 Video  
[3] PAC-0417-19431-WXQ_suppl_3 Video  
[4] PAC-0417-19431-WXQ_suppl_4 Video  
[5] PAC-0417-19431-WXQ_suppl_5 Video  
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed