1. Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2. Hong Kong Tranditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong, China 3. University of Hawaii Cancer Center, Honolulu, HI 96813, USA 4. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Colorectal cancer (CRC) and hepatocellular carcinoma (HCC) are the second and third most common causes of death by cancer, respectively. The etiologies of the two cancers are either infectious insult or due to chronic use of alcohol, smoking, diet, obesity and diabetes. Pathological changes in the composition of the gut microbiota that lead to intestinal inflammation are a common factor for both HCC and CRC. However, the gut microbiota of the cancer patient evolves with disease pathogenesis in unique ways that are affected by etiologies and environmental factors. In this review, we examine the changes that occur in the composition of the gut microbiota across the stages of the HCC and CRC. Based on the idea that the gut microbiota are an additional “lifeline” and contribute to the tumor microenvironment, we can observe from previously published literature how the microbiota can cause a shift in the balance from normal → inflammation → diminished inflammation from early to later disease stages. This pattern leads to the hypothesis that tumor survival depends on a less proinflammatory tumor microenvironment. The differences observed in the gut microbiota composition between different disease etiologies as well as between HCC and CRC suggest that the tumor microenvironment is unique for each case.
. [J]. Protein & Cell, 2021, 12(5): 374-393.
Wei Jia, Cynthia Rajani, Hongxi Xu, Xiaojiao Zheng. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell, 2021, 12(5): 374-393.
AM Aly, A Adel, AO El-Gendy, TM Essam, RK Aziz (2016) Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog 8:42 https://doi.org/10.1186/s13099-016-0124-2
2
JC Arthur, E Perez-Chanona, M Muhlbauer, S Tomkovich, JM Uronis, TJ Fan, BJ Campbell, T Abujamel, B Dogan, AB Rogerset al. (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123 https://doi.org/10.1126/science.1224820
3
HL Barrett, LF Gomez-Arango, SA Wilkinson, HD McIntyre, LK Callaway, M Morrison, M Dekker Nitert (2018) A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients 10:890 https://doi.org/10.3390/nu10070890
4
H Bernstein, C Bernstein, CM Payne, K Dvorakova, H Garewal (2005) Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res 589:47–65 https://doi.org/10.1016/j.mrrev.2004.08.001
5
C Bernstein, H Holubec, AK Bhattacharyya, H Nguyen, CM Payne, B Zaitlin, H Bernstein(2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871 https://doi.org/10.1007/s00204-011-0648-7
6
S Bluemel, L Wang, C, Kuelbs K Moncera, M Torralba, H Singh, DE Fouts, B Schnabl (2019) Intestinal and hepatic microbiota changes associated with chronic ethanol administration in mice. Gut Microbes 14:1–11 https://doi.org/10.1080/19490976.2019.1595300
7
A Boleij, EM Hechenbleikner, AC Goodwin, R Badani, EM Stein, MG Lazarev, B Ellis, KC Carroll, E Albesiano, EC Wicket al. (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 60:208–215 https://doi.org/10.1093/cid/ciu787
8
B Chaucer, N Smith, D Beatty, M Yadav (2018) Multiple hepatic abscess from parvimonas micra: an emerging gastrointestinal microbe. ACG Case Rep J 5:e70 https://doi.org/10.14309/crj.2018.70
9
Y Chen, J Guo, G Qian, D Fang, D Shi, L Guo, L Li (2015) Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol 30:1429–1437 https://doi.org/10.1111/jgh.12932
10
K Chen, J Ma, X Jia, W Ai, Z Ma, Q Pan (2019) Advancing the understanding of NAFLD to hepatocellular carcinoma development: from experimental models to humans. Biochim Biophys Acta Rev Cancer 1871:117–125 https://doi.org/10.1016/j.bbcan.2018.11.005
11
MD Chow, YH Lee, GL Guo (2017) The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Mol Aspects Med 56:34–44 https://doi.org/10.1016/j.mam.2017.04.004
12
H Chu, Y Duan, L Yang, B Schnabl (2019) Small metabolites, possible big changes: a microbiota-centered view of nonalcoholic fatty liver disease. Gut 68:359–370 https://doi.org/10.1136/gutjnl-2018-316307
13
S, Coppenhagen-Glazer A Sol, J, Abed R, Naor X Zhang, YW Han, G Bachrach (2015) Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun 83:1104–1113 https://doi.org/10.1128/IAI.02838-14
14
C Cosseau, DA Devine, E Dullaghan, JL Gardy, A Chikatamarla, S Gellatly, LL Yu, J Pistolic, R Falsafi, J Tagget al. (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175 https://doi.org/10.1128/IAI.00188-08
15
Z Dai, OO Coker, G Nakatsu, WKK Wu, L Zhao, Z Chen, FKL Chan, K Kristiansen, JJY Sung, SH Wonget al. (2018) Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 6:70 https://doi.org/10.1186/s40168-018-0451-2
16
V De Simone, F, Pallone G, Monteleone C Stolfi (2013) Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology 2: e26617 https://doi.org/10.4161/onci.26617
17
V De Simone, E Franze, G Ronchetti, A, Colantoni MC Fantini, D Di Fusco, GS Sica, P Sileri, TT MacDonald, F Palloneet al. (2015) Th17-type cytokines, IL-6 and TNF-alpha synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene 34:3493–3503 https://doi.org/10.1038/onc.2014.286
18
CH Dejong, MC van de Poll, PB Soeters, R Jalan, SW Olde Damink (2007) Aromatic amino acid metabolism during liver failure. J Nutr 137:1579S–1585S https://doi.org/10.1093/jn/137.6.1579S
J Despres, E Forano, P Lepercq, S Comtet-Marre, G Jubelin, C Chambon, CJ Yeoman, ME Berg Miller, CJ Fields, E Martenset al. (2016) Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genomics 17:326 https://doi.org/10.1186/s12864-016-2680-8
21
Q Feng, S Liang, H Jia, A Stadlmayr, L, Tang Z Lan, D Zhang, H Xia, X Xu, Z Jieet al.(2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6:6528 https://doi.org/10.1038/ncomms7528
22
DM Ferreira, MB Afonso, PM Rodrigues, AL Simao, DM Pereira, PM Borralho, CM Rodrigues, RE Castro (2014) c-Jun N-terminal kinase 1/c-Jun activation of the p53/microRNA 34a/sirtuin 1 pathway contributes to apoptosis induced by deoxycholic acid in rat liver . Mol Cell Biol 34:1100–1120 https://doi.org/10.1128/MCB.00420-13
23
Y Furusawa, Y Obata, S Fukuda, TA Endo, G Nakato, D Takahashi, Y Nakanishi, C Uetake, K Kato, T Katoet al. (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450 https://doi.org/10.1038/nature12721
24
J George, N Pera, N Phung, I Leclercq, J Yun Hou, G Farrell (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 39:756–764 https://doi.org/10.1016/S0168-8278(03)00376-3
25
L Giloteaux, JK Goodrich, WA Walters, SM Levine, RE Ley, MR Hanson (2016) Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome . Microbiome 4:30 https://doi.org/10.1186/s40168-016-0171-4
26
KL Greathouse, CC Harris, SJ Bultman (2015) Dysfunctional families: Clostridium scindens and secondary bile acids inhibit the growth of Clostridium difficile. Cell Metab 21:9–10 https://doi.org/10.1016/j.cmet.2014.12.016
27
W Guo, HY Tan, N Wang, X Wang, Y Feng (2018) Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation. Cancer Manag Res 10:715–734 https://doi.org/10.2147/CMAR.S156837
28
C Gur, Y Ibrahim, B Isaacson, R Yamin, J Abed, M Gamliel, J, Enk Y Bar-On, N Stanietsky-Kaynan, S Coppenhagen-Glazeret al. (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355 https://doi.org/10.1016/j.immuni.2015.01.010
29
B Heidrich, M Vital, I Plumeier, N Doscher, S Kahl, J Kirschner, S Ziegert, P, Solbach H Lenzen, A Potthoffet al.(2018) Intestinal microbiota in patients with chronic hepatitis C with and without cirrhosis compared with healthy controls. Liver Int 38:50–58 https://doi.org/10.1111/liv.13485
30
AA Hibberd, A Lyra, AC Ouwehand, P Rolny, H Lindegren, L Cedgard, Y Wettergren (2017) Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4:e000145 https://doi.org/10.1136/bmjgast-2017-000145
31
T Inoue, J, Nakayama K Moriya, H Kawaratani, R Momoda, K Ito, E Iio, S Nojiri, K Fujiwara, M Yonedaet al. (2018) Gut dysbiosis associated with hepatitis C virus infection. Clin Infect Dis 67:869–877 https://doi.org/10.1093/cid/ciy205
32
K Kameyama, K Itoh (2014) Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:427–430 https://doi.org/10.1264/jsme2.ME14054
33
G Kim, F Deepinder, W Morales, L Hwang, S Weitsman, C Chang, R, Gunsalus M Pimentel(2012) Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci 57:3213–3218 https://doi.org/10.1007/s10620-012-2197-1
34
V Koliaraki, M Pasparakis, G Kollias (2015) IKKbeta in intestinal mesenchymal cells promotes initiation of colitis-associated cancer . J Exp Med 212:2235–2251 https://doi.org/10.1084/jem.20150542
35
O Krenkel, F Tacke (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17:306–321 https://doi.org/10.1038/nri.2017.11
SL La Rosa, ML Leth, L Michalak, ME Hansen, NA Pudlo, R Glowacki, G, Pereira CT Workman , MO Arntzen, PB Popeet al. (2019) The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary beta-mannans. Nat Commun 10:905 https://doi.org/10.1038/s41467-019-08812-y
38
S Leclercq, S Matamoros, PD Cani, AM Neyrinck, F Jamar, P Starkel, K Windey, V Tremaroli, F, Backhed K Verbekeet al. (2014) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 111:E4485–4493 https://doi.org/10.1073/pnas.1415174111
L, Lin A Liu, Z Peng, HJ Lin, PK Li, C Li, J Lin (2011) STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res 71:7226–7237 https://doi.org/10.1158/0008-5472.CAN-10-4660
41
Q Liu, F Li, Y Zhuang, J Xu, J Wang, X Mao, Y, Zhang X Liu (2019) Alteration in gut microbiota associated with hepatitis B and nonhepatitis virus related hepatocellular carcinoma. Gut Pathog 11:1 https://doi.org/10.1186/s13099-018-0281-6
42
X, Liu Y Cheng, L Shao, Z Ling (2020) Alterations of the predominant fecal microbiota and disruption of the gut mucosal barrier in patients with early-stage colorectal cancer. Biomed Res Int 2020:2948282 https://doi.org/10.1155/2020/2948282
TM Loo, F Kamachi, Y Watanabe, S Yoshimoto, H Kanda, Y Arai, Y Nakajima-Takagi, A Iwama, T Koga, Y Sugimotoet al. (2017) Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 7:522–538 https://doi.org/10.1158/2159-8290.CD-16-0932
45
LR Lopetuso, F Scaldaferri, V Petito, A Gasbarrini (2013) Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5:23 https://doi.org/10.1186/1757-4749-5-23
46
CA Lozupone, JI Stombaugh, JI Gordon, JK Jansson, R Knight (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230 https://doi.org/10.1038/nature11550
47
S Mizutani, T Yamada, S Yachida (2020) Significance of the gut microbiome in multistep colorectal carcinogenesis. Cancer Sci 111:766–773 https://doi.org/10.1111/cas.14298
48
KB Myant, P Cammareri, EJ McGhee, RA Ridgway, DJ Huels, JB Cordero, S Schwitalla, G Kalna, EL Ogg, D Athineoset al. (2013) ROS production and NF-kappaB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 12:761–773 https://doi.org/10.1016/j.stem.2013.04.006
49
G Nakatsu, X Li, H Zhou, J Sheng, SH Wong, WK Wu, SC Ng, H Tsoi, Y, Dong N Zhanget al. (2015) Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 6:8727 https://doi.org/10.1038/ncomms9727
50
A O’Callaghan, D van Sinderen (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925 https://doi.org/10.3389/fmicb.2016.00925
51
N Ohtani, N Kawada (2019) Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: a special focus on the gut microbiota relationship. Hepatol Commun 3:456–470 https://doi.org/10.1002/hep4.1331
52
HW Pan, LT Du, W Li, YM Yang, Y Zhang, CX Wang (2020) Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res Microbiol 1:12. https://doi.org/10.1016/j.resmic.2020.01.001
53
CH Park, CS Eun, DS Han (2018) Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest Res 16:338–345 https://doi.org/10.5217/ir.2018.16.3.338
54
M Patel, MI Shariff, NG Ladep, AV Thillainayagam, HC Thomas, SA Khan, SD Taylor-Robinson (2012) Hepatocellular carcinoma: diagnostics and screening. J Eval Clin Pract 18:335–342 https://doi.org/10.1111/j.1365-2753.2010.01599.x
55
KB Pedersen, CF Pulliam, A Patel, F, Del Piero TTN Watanabe, UD Wankhade, K Shankar, C Hicks, MJ Ronis (2019) Liver tumorigenesis is promoted by a high saturated fat diet specifically in male mice and is associated with hepatic expression of the proto-oncogene Agap2 and enrichment of the intestinal microbiome with Coprococcus. Carcinogenesis 40:349–359 https://doi.org/10.1093/carcin/bgy141
56
C, Petersen JL Round (2014) Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 16:1024–1033 https://doi.org/10.1111/cmi.12308
57
CW Png, SK Linden, KS Gilshenan, EG Zoetendal, CS McSweeney, LI Sly, MA McGuckin, TH Florin (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428 https://doi.org/10.1038/ajg.2010.281
DC Rapozo, C, Bernardazzi HS de Souza (2017) Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol 23:2124–2140 https://doi.org/10.3748/wjg.v23.i12.2124
61
FE Rey, JJ Faith, J Bain, MJ Muehlbauer, RD Stevens, CB Newgard, JI Gordon (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090 https://doi.org/10.1074/jbc.M110.117713
MR Rubinstein, X Wang, W Liu, Y, Hao G Cai, YW Han (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206 https://doi.org/10.1016/j.chom.2013.07.012
65
S Saitoh, S Noda, Y, Aiba A Takagi, M Sakamoto, Y Benno, Y Koga (2002) Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin Diagn Lab Immunol 9:54–59 https://doi.org/10.1128/CDLI.9.1.54-59.2002
66
M Sakamoto, A Takagaki, K Matsumoto, Y, Kato K Goto , Y Benno (2009) Butyricimonas synergistica gen. nov., sp. nov. and Butyricimonas virosa sp. nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. Int J Syst Evol Microbiol 59:1748–1753 https://doi.org/10.1099/ijs.0.007674-0
KJP Schwenger, L Chen, A Chelliah, HE Da Silva, A Teterina, EM Comelli, A Taibi, BM Arendt, S Fischer, JP Allard (2018) Markers of activated inflammatory cells are associated with disease severity and intestinal microbiota in adults with nonalcoholic fatty liver disease. Int J Mol Med 42:2229–2237 https://doi.org/10.3892/ijmm.2018.3800
69
S Schwitalla, AA Fingerle, P Cammareri, T Nebelsiek, SI Goktuna, PK Ziegler, O Canli, J Heijmans, DJ Huels, G Moreauxet al. (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38 https://doi.org/10.1016/j.cell.2012.12.012
70
C Soeiro, IR Quilici, A Legoff, MB Oussalah, M Morin, C Alauzet, A Charmillon (2019 ) Hepatic abscess due to Dialister pneumosintes—a case report. Anaerobe 59:35–37 https://doi.org/10.1016/j.anaerobe.2019.05.006
71
LK Stenman, R Holma, A Eggert, R Korpela (2013) A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 304:G227–234 https://doi.org/10.1152/ajpgi.00267.2012
72
K Takeshita, S Mizuno, Y Mikami, T Sujino, K Saigusa, K Matsuoka, M Naganuma, T Sato, T Takada, H Tsujiet al. (2016) A single species of Clostridium Subcluster XIVa decreased in ulcerative colitis patients. Inflamm Bowel Dis 22:2802–2810 https://doi.org/10.1097/MIB.0000000000000972
73
VR Thota, S, Dacha A Natarajan, J Nerad (2011) Eggerthella lenta bacteremia in a Crohn’s disease patient after ileocecal resection. Fut Microbiol 6:595–597 https://doi.org/10.2217/fmb.11.31
B Upadhyaya, L McCormack, AR Fardin-Kia, R Juenemann, S Nichenametla, J Clapper, B Specker, M Dey (2016) Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions. Sci Rep 6:28797 https://doi.org/10.1038/srep28797
76
B van den Bogert, M Meijerink, EG Zoetendal, JM Wells, M Kleerebezem (2014) Immunomodulatory properties of Streptococcus and Veillonella isolates from the human small intestine microbiota . PLoS ONE 9:e114277 https://doi.org/10.1371/journal.pone.0114277
J Wang, Y, Wang X Zhang, J Liu, Q Zhang, Y Zhao, J, Peng Q Feng, J, Dai S Sun et al (2017) Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Front Microbiol 8:2222 https://doi.org/10.3389/fmicb.2017.02222
79
K Wang, M Liao, N Zhou, L Bao, K Ma, Z Zheng, Y, Wang C Liu, W Wang, J Wanget al.(2019) Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 26(222–235):e225 https://doi.org/10.1016/j.celrep.2018.12.028
JM Wong, R de Souza, CW Kendall, A Emam, DJ Jenkins (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243 https://doi.org/10.1097/00004836-200603000-00015
82
SH Wong, L Zhao, X Zhang, G Nakatsu, J, Han W Xu, X Xiao, TNY Kwong, H Tsoi, WKK Wuet al. (2017) Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153(1621–1633):e1626 https://doi.org/10.1016/S0016-5085(17)30864-8
83
P Wu, D Wu, C Ni, J Ye, W Chen, G Hu, Z Wang, C Wang, Z Zhang, W Xiaet al. (2014a) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40:785–800 https://doi.org/10.1016/j.immuni.2014.03.013
84
YJ Wu, MY Xu, LG Lu (2014b) Clinical advances in fibrosis progression of chronic hepatitis B and C. J Clin Transl Hepatol 2:222–227
85
F Wu, X Guo, J Zhang, M Zhang, Z Ou, Y Peng (2017) Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med 14:3122–3126 https://doi.org/10.3892/etm.2017.4878
86
M Wu, P Li, Y An, J Ren, D Yan, J Cui, D Li, M Li, M Wang, G Zhong (2019) Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol Res 150:104489 https://doi.org/10.1016/j.phrs.2019.104489
87
RJ Xavier, DK Podolsky (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434 https://doi.org/10.1038/nature06005
88
G Xie, X Wang, F Huang, A Zhao, W Chen, J Yan, Y, Zhang S Lei, K, Ge X Zhenget al.(2016a) Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer 139:1764–1775 https://doi.org/10.1002/ijc.30219
89
G, Xie X Wang, P Liu, R Wei, W Chen, C Rajani, BY Hernandez, R Alegado, B Dong, D Liet al. (2016b) Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7:19355–19366 https://doi.org/10.18632/oncotarget.8466
90
YH Xie, QY Gao, GX Cai, XM Sun, XM Sun, TH Zou, HM Chen, SY Yu, YW Qiu, WQ Guet al. (2017) Fecal Clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. EBioMedicine 25:32–40 https://doi.org/10.1016/j.ebiom.2017.10.005
91
S Yachida, S Mizutani, H Shiroma, S Shiba, T Nakajima, T Sakamoto, H Watanabe, K Masuda, Y, Nishimoto M Kuboet al. (2019) Metagenomic and metabolomic analyses reveal distinct stagespecific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25:968–976 https://doi.org/10.1038/s41591-019-0458-7
92
T Yu, F Guo, Y Yu, T Sun, D Ma, J Han, Y Qian, I Kryczek, D Sun, N Nagarshethet al. (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170(548–563):e516 https://doi.org/10.1016/j.cell.2017.07.008
93
Y Zeng, S Chen, Y, Fu W Wu, T Chen, J Chen, B Yang, Q Ou (2020) Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J Viral Hepat 27:143–155 https://doi.org/10.1111/jvh.13216
94
Z Zhang, H Zhai, J Geng, R Yu, H Ren, H Fan, P Shi (2013) Largescale survey of gut microbiota associated with MHE Via 16S rRNA-based pyrosequencing. Am J Gastroenterol 108:1601–1611 https://doi.org/10.1038/ajg.2013.221
95
Y Zhang, X Yu, E Yu, N Wang, Q Cai, Q Shuai, F, Yan L Jiang, H Wang, J Liuet al. (2018) Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: a case-control study. BMC Microbiol 18:92 https://doi.org/10.1186/s12866-018-1232-6