Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2021, Vol. 12 Issue (5): 346-359   https://doi.org/10.1007/s13238-020-00785-9
  本期目录
Gut microbes in cardiovascular diseases and their potential therapeutic applications
Ling Jin1, Xiaoming Shi2, Jing Yang2, Yangyu Zhao2, Lixiang Xue1(), Li Xu3(), Jun Cai4()
1. Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
2. Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
3. Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
4. Hypertension center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
 全文: PDF(1580 KB)  
Abstract

Microbial ecosystem comprises a complex community in which bacteria interact with each other. The potential roles of the intestinal microbiome play in human health have gained considerable attention. The imbalance of gut microbial community has been looked to multiple chronic diseases. Cardiovascular diseases (CVDs) are leading causes of morbidity worldwide and are influenced by genetic and environmental factors. Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome. In this review, we highlight the complex interplay between microbes, their metabolites, and the potential influence on the generation and development of CVDs. The therapeutic potential of using intestinal microbiomes to treat CVD is also discussed. It is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.

Key wordsgut microbiota    cardiovascular diseases    action mechanism    therapeutic applications
收稿日期: 2020-05-05      出版日期: 2021-06-08
Corresponding Author(s): Lixiang Xue,Li Xu,Jun Cai   
 引用本文:   
. [J]. Protein & Cell, 2021, 12(5): 346-359.
Ling Jin, Xiaoming Shi, Jing Yang, Yangyu Zhao, Lixiang Xue, Li Xu, Jun Cai. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell, 2021, 12(5): 346-359.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-020-00785-9
https://academic.hep.com.cn/pac/CN/Y2021/V12/I5/346
1 S Adnan, JW Nelson, NJ Ajami, VR Venna, JF Petrosino, RM Jr Bryan, DJ Durgan (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49:96–104
https://doi.org/10.1152/physiolgenomics.00081.2016
2 EC Aguilar, AJ Leonel, LG Teixeira, AR Silva, JF Silva, JM Pelaez, LS Capettini, VS Lemos, RA Santos, JI Alvarez-Leite (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis 24:606–613
https://doi.org/10.1016/j.numecd.2014.01.002
3 AF Ahmad, G Dwivedi, F O’Gara, J Caparros-Martin, NC Ward (2019) The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 317:H923–H938
https://doi.org/10.1152/ajpheart.00376.2019
4 LJ Appel, TJ Moore, E Obarzanek, WM Vollmer, LP Svetkey, FM Sacks, GA Bray, TM Vogt, JA Cutler, MM Windhauseret al. (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336:1117–1124
https://doi.org/10.1056/NEJM199704173361601
5 MAK Azad, M Sarker, T Li, J Yin (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630
https://doi.org/10.1155/2018/9478630
6 H Bartolomaeus, A Balogh, M Yakoub, S Homann, L Marko, S Hoges, D Tsvetkov, A Krannich, S Wundersitz, EG Averyet al. (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407–1421
https://doi.org/10.1161/CIRCULATIONAHA.118.036652
7 ML Battson, DM Lee, DK Jarrell, S Hou, KE Ecton, TL Weir, CL Gentile (2018a) Suppression of gut dysbiosis reverses Western dietinduced vascular dysfunction. Am J Physiol Endocrinol Metab 314:E468–E477
https://doi.org/10.1152/ajpendo.00187.2017
8 ML Battson, DM Lee, TL Weir, CL Gentile (2018b) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1–15
https://doi.org/10.1016/j.jnutbio.2017.12.010
9 E Blacher, M Levy, E Tatirovsky, E Elinav (2017) Microbiomemodulated metabolites at the interface of host immunity. J Immunol 198:572–580
https://doi.org/10.4049/jimmunol.1601247
10 VE Brunt, RA Gioscia-Ryan, AG Casso, NS VanDongen, BP Ziemba, ZJ Sapinsley, JJ Richey, MC Zigler, AP Neilson, KP Davyet al. (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76:101–112
https://doi.org/10.1161/HYPERTENSIONAHA.120.14759
11 CA Cason, KT Dolan, G Sharma, M Tao, R Kulkarni, IB Helenowski, BM Doane, MJ Avram, MM McDermott, EB Changet al. (2018) Plasma microbiome-modulated indoleand phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(1552–1562):e1557
https://doi.org/10.1016/j.jvs.2017.09.029
12 DJ Castillo, RF Rifkin, DA Cowan, M Potgieter (2019) The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol 9:148
https://doi.org/10.3389/fcimb.2019.00148
13 YK Chan, MS Brar, PV Kirjavainen, Y Chen, J Peng, D Li, FC Leung, H El-Nezami (2016a) High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE (-/-) mice. BMC Microbiol 16:264
https://doi.org/10.1186/s12866-016-0883-4
14 YK Chan, H El-Nezami, Y Chen, K Kinnunen, PV Kirjavainen (2016b) Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 6:61
https://doi.org/10.1186/s13568-016-0229-5
15 S Chen, A Henderson, MC Petriello, KA Romano, M Gearing, J Miao, M Schell, WJ Sandoval-Espinola, J Tao, B Shaet al. (2019) Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30(1141–1151):e1145
https://doi.org/10.1016/j.cmet.2019.08.021
16 YJ Cheng, XY Nie, XM Chen, XX Lin, K Tang, WT Zeng, WY Mei, LJ Liu, M Long, FJ Yaoet al. (2015) The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol 66:2173–2184
https://doi.org/10.1016/j.jacc.2015.09.029
17 F Cheung (2011) TCM: made in China. Nature 480:S82–83
https://doi.org/10.1038/480S82a
18 JC Clemente, LK Ursell, LW Parfrey, R Knight (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270
https://doi.org/10.1016/j.cell.2012.01.035
19 X Cui, L Ye, J Li, L Jin, W Wang, S Li, M Bao, S Wu, L Li, B Genget al. (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635
https://doi.org/10.1038/s41598-017-18756-2
20 LA David, CF Maurice, RN Carmody, DB Gootenberg, JE Button, BE Wolfe, AV Ling, AS Devlin, Y Varma, MA Fischbachet al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
https://doi.org/10.1038/nature12820
21 J Davignon, P Ganz (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32
https://doi.org/10.1161/01.CIR.0000131515.03336.f8
22 F De Filippis, N Pellegrini, L Vannini, IB Jeffery, A La Storia, L Laghi, DI Serrazanetti, R Di Cagno, I Ferrocino, C Lazziet al. (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821
https://doi.org/10.1136/gutjnl-2015-309957
23 MS Desai, AM Seekatz, NM Koropatkin, N Kamada, CA Hickey, M Wolter, NA Pudlo, S Kitamoto, N Terrapon, A Mulleret al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(1339–1353):e1321
https://doi.org/10.1016/j.cell.2016.10.043
24 V Dinakaran, L John, A Rathinavel, P Gunasekaran, J Rajendhran (2012) Prevalence of bacteria in the circulation of cardiovascular disease patients, Madurai, India. Heart Lung Circ 21:281–283
https://doi.org/10.1016/j.hlc.2012.02.007
25 V Dinakaran, A Rathinavel, M Pushpanathan, R Sivakumar, P Gunasekaran, J Rajendhran (2014) Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS ONE 9:e105221
https://doi.org/10.1371/journal.pone.0105221
26 DR Donohoe, N Garge, X Zhang, W Sun, TM O’Connell, MK Bunger, SJ Bultman (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526
https://doi.org/10.1016/j.cmet.2011.02.018
27 SH Duncan, A Belenguer, G Holtrop, AM Johnstone, HJ Flint, GE Lobley (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078
https://doi.org/10.1128/AEM.02340-06
28 DJ Durgan, BP Ganesh, JL Cope, NJ Ajami, SC Phillips, JF Petrosino, EB Hollister, RM Jr Bryan (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469–474
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
29 F Fak, F Backhed (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/mice. PLoS ONE 7:e46837
https://doi.org/10.1371/journal.pone.0046837
30 EA Franzosa, T Hsu, A Sirota-Madi, A Shafquat, G Abu-Ali, XC Morgan, C Huttenhower (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372
https://doi.org/10.1038/nrmicro3451
31 K Fukami, S Yamagishi, K Sakai, Y Kaida, M Yokoro, S Ueda, Y Wada, M Takeuchi, M Shimizu, H Yamazakiet al. (2015) Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol 65:289–295
https://doi.org/10.1097/FJC.0000000000000197
32 XT Gan, G Ettinger, CX Huang, JP Burton, JV Haist, V Rajapurohitam, JE Sidaway, G Martin, GB Gloor, JR Swannet al. (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7:491–499
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978
33 LF Gomez-Arango, HL Barrett, HD McIntyre, LK Callaway, M Morrison, M Dekker Nitert, ST Group (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–981
https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
34 M Gomez-Guzman, M Toral, M Romero, R Jimenez, P Galindo, M Sanchez, MJ Zarzuelo, M Olivares, J Galvez, J Duarte (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59:2326–2336
https://doi.org/10.1002/mnfr.201500290
35 A Gozd-Barszczewska, M Koziol-Montewka, P Barszczewski, A Mlodzinska, K Huminska (2017) Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med 24:416–422
https://doi.org/10.26444/aaem/75456
36 SI Halkjaer, AH Christensen, BZS Lo, PD Browne, S Gunther, LH Hansen, AM Petersen (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebocontrolled study. Gut 67:2107–2115
https://doi.org/10.1136/gutjnl-2018-316434
37 K He, Y Hu, H Ma, Z Zou, Y Xiao, Y Yang, M Feng, X Li, X Ye (2016) Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 1862:1696–1709
https://doi.org/10.1016/j.bbadis.2016.06.006
38 JW Honour, SP Borriello, U Ganten, P Honour (1985) Antibiotics attenuate experimental hypertension in rats. J Endocrinol 105:347–350
https://doi.org/10.1677/joe.0.1050347
39 Y Huang, J Wang, G Quan, X Wang, L Yang, L Zhong (2014) Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 80:7496–7504
https://doi.org/10.1128/AEM.02926-14
40 VM Isabella, BN Ha, MJ Castillo, DJ Lubkowicz, SE Rowe, YA Millet, CL Anderson, N Li, AB Fisher, KA Westet al. (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857–864
https://doi.org/10.1038/nbt.4222
41 Z Jie, H Xia, SL Zhong, Q Feng, S Li, S Liang, H Zhong, Z Liu, Y Gao, H Zhaoet al. (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845
https://doi.org/10.1038/s41467-017-00900-1
42 M Jin, Z Qian, J Yin, W Xu, X Zhou (2019) The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 23:2343–2350
https://doi.org/10.1111/jcmm.14195
43 T Kamo, H Akazawa, W Suda, A Saga-Kamo, Y Shimizu, H Yagi, Q Liu, S Nomura, AT Naito, N Takedaet al. (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12:e0174099
https://doi.org/10.1371/journal.pone.0174099
44 C Karlsson, S Ahrne, G Molin, A Berggren, I Palmquist, GN Fredrikson, B Jeppsson (2010) Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 208:228–233
https://doi.org/10.1016/j.atherosclerosis.2009.06.019
45 FH Karlsson, F Fak, I Nookaew, V Tremaroli, B Fagerberg, D Petranovic, F Backhed, J Nielsen (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245
https://doi.org/10.1038/ncomms2266
46 K Kasahara, KA Krautkramer, E Org, KA Romano, RL Kerby, EI Vivas, M Mehrabian, JM Denu, F Backhed, AJ Lusiset al. (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461–1471
https://doi.org/10.1038/s41564-018-0272-x
47 S Khalesi, J Sun, N Buys, R Jayasinghe (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64:897–903
https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
48 S Khalesi, N Bellissimo, C Vandelanotte, S Williams, D Stanley, C Irwin (2019) A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr 73:24–37
https://doi.org/10.1038/s41430-018-0135-9
49 RA Koeth, Z Wang, BS Levison, JA Buffa, E Org, BT Sheehy, EB Britt, X Fu, Y Wu, L Liet al. (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585
https://doi.org/10.1038/nm.3145
50 V Lam, J Su, S Koprowski, A Hsu, JS Tweddell, P Rafiee, GJ Gross, NH Salzman, JE Baker (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735
https://doi.org/10.1096/fj.11-197921
51 V Lam, J Su, A Hsu, GJ Gross, NH Salzman, JE Baker (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11:e0160840
https://doi.org/10.1371/journal.pone.0160840
52 KN Lam, M Alexander, PJ Turnbaugh (2019) Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe 26:22–34
https://doi.org/10.1016/j.chom.2019.06.011
53 M Li, X Shu, H Xu, C Zhang, L Yang, L Zhang, G Ji (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14:237
https://doi.org/10.1186/s12967-016-0987-5
54 J Li, F Zhao, Y Wang, J Chen, J Tao, G Tian, S Wu, W Liu, Q Cui, B Genget al. (2017a) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14
https://doi.org/10.1186/s40168-016-0222-x
55 XS Li, S Obeid, R Klingenberg, B Gencer, F Mach, L Raber, S Windecker, N Rodondi, D Nanchen, O Mulleret al. (2017b) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824
https://doi.org/10.1093/eurheartj/ehw582
56 P Libby, PM Ridker, A Maseri (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143
https://doi.org/10.1161/hc0902.104353
57 R Lopez-Mejias, F Genre, M Garcia-Bermudez, B Ubilla, S Castaneda, J Llorca, C Gonzalez-Juanatey, A Corrales, JA Miranda-Filloy, T Pinaet al. (2014) Lack of association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and carotid intima-media thickness, carotid plaques, and cardiovascular disease in patients with rheumatoid arthritis. Mediators Inflamm 2014:756279
https://doi.org/10.1155/2014/756279
58 M Luedde, T Winkler, FA Heinsen, MC Ruhlemann, ME Spehlmann, A Bajrovic, W Lieb, A Franke, SJ Ott, N Frey (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282–290
https://doi.org/10.1002/ehf2.12155
59 P Mamic, PA Heidenreich, H Hedlin, L Tennakoon, KL Staudenmayer (2016) Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile infection rates and in-hospital mortality. J Card Fail 22:891–900
https://doi.org/10.1016/j.cardfail.2016.06.005
60 FZ Marques, E Nelson, PY Chu, D Horlock, A Fiedler, M Ziemann, JK Tan, S Kuruppu, NW Rajapakse, A El-Ostaet al. (2017) Highfiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977
https://doi.org/10.1161/CIRCULATIONAHA.116.024545
61 P Maruvada, V Leone, LM Kaplan, EB Chang (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22:589–599
https://doi.org/10.1016/j.chom.2017.10.005
62 B Mell, VR Jala, AV Mathew, J Byun, H Waghulde, Y Zhang, B Haribabu, M Vijay-Kumar, S Pennathur, B Joe (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47:187–197
https://doi.org/10.1152/physiolgenomics.00136.2014
63 A Mencarelli, S Cipriani, B Renga, A Bruno, C D’Amore, E Distrutti, S Fiorucci (2012) VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 7:e45425
https://doi.org/10.1371/journal.pone.0045425
64 G Molin (2001) Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380S–385S
https://doi.org/10.1093/ajcn/73.2.380s
65 M Naruszewicz, ML Johansson, D Zapolska-Downar, H Bukowska (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255
https://doi.org/10.1093/ajcn/76.6.1249
66 N Natarajan, D Hori, S Flavahan, J Steppan, NA Flavahan, DE Berkowitz, JL Pluznick (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G proteincoupled receptor 41. Physiol Genomics 48:826–834
https://doi.org/10.1152/physiolgenomics.00089.2016
67 I Nemet, PP Saha, N Gupta, W Zhu, KA Romano, SM Skye, T Cajka, ML Mohan, L Li, Y Wuet al. (2020) A cardiovascular diseaselinked gut microbial metabolite acts via adrenergic receptors. Cell 180(862–877):e822
https://doi.org/10.1016/j.cell.2020.02.016
68 SJ Ott, NE El Mokhtari, M Musfeldt, S Hellmig, S Freitag, A Rehman, T Kuhbacher, S Nikolaus, P Namsolleck, M Blautet al. (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937
https://doi.org/10.1161/CIRCULATIONAHA.105.579979
69 T Ozdal, DA Sela, J Xiao, D Boyacioglu, F Chen, E Capanoglu (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78
https://doi.org/10.3390/nu8020078
70 E Pasini, R Aquilani, C Testa, P Baiardi, S Angioletti, F Boschi, M Verri, F Dioguardi (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220–227
https://doi.org/10.1016/j.jchf.2015.10.009
71 J Pluznick (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–207
https://doi.org/10.4161/gmic.27492
72 JL Pluznick, RJ Protzko, H Gevorgyan, Z Peterlin, A Sipos, J Han, I Brunet, LX Wan, F Rey, T Wanget al. (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415
https://doi.org/10.1073/pnas.1215927110
73 R Poesen, K Claes, P Evenepoel, H de Loor, P Augustijns, D Kuypers, B Meijers (2016) Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 27:3479–3487
https://doi.org/10.1681/ASN.2015121302
74 LR Portugal, JL Goncalves, LR Fernandes, HP Silva, RM Arantes, JR Nicoli, LQ Vieira, JI Alvarez-Leite (2006) Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res 39:629–635
https://doi.org/10.1590/S0100-879X2006000500010
75 Y Qi, JM Aranda, V Rodriguez, MK Raizada, CJ Pepine (2015) Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol 201:157–158
https://doi.org/10.1016/j.ijcard.2015.07.078
76 J Qin, R Li, J Raes, M Arumugam, KS Burgdorf, C Manichanh, T Nielsen, N Pons, F Levenez, T Yamadaet al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
https://doi.org/10.1038/nature08821
77 J Rajendhran, M Shankar, V Dinakaran, A Rathinavel, P Gunasekaran (2013) Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol 168:5118–5120
https://doi.org/10.1016/j.ijcard.2013.07.232
78 AB Roberts, X Gu, JA Buffa, AG Hurd, Z Wang, W Zhu, N Gupta, SM Skye, DB Cody, BS Levisonet al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407–1417
https://doi.org/10.1038/s41591-018-0128-1
79 C Ronda, SP Chen, V Cabral, SJ Yaung, HH Wang (2019) Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 16:167–170
https://doi.org/10.1038/s41592-018-0301-y
80 A Sandek, J Bauditz, A Swidsinski, S Buhner, J Weber-Eibel, S von Haehling, W Schroedl, T Karhausen, W Doehner, M Rauchhauset al. (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569
https://doi.org/10.1016/j.jacc.2007.07.016
81 A Sandek, I Bjarnason, HD Volk, R Crane, JB Meddings, J Niebauer, PR Kalra, S Buhner, R Herrmann, J Springeret al. (2012) Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 157:80–85
https://doi.org/10.1016/j.ijcard.2010.12.016
82 MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, CT ColeJeffrey, GO Lobaton, DC Stewart, A Rubianoet al. (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120:312–323
https://doi.org/10.1161/CIRCRESAHA.116.309006
83 I Sekirov, SL Russell, LC Antunes, BB Finlay (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904
https://doi.org/10.1152/physrev.00045.2009
84 MM Seldin, Y Meng, H Qi, W Zhu, Z Wang, SL Hazen, AJ Lusis, DM Shih (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.115.002767
85 V Senthong, Z Wang, Y Fan, Y Wu, SL Hazen, WH Tang (2016a) Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.116.004237
86 V Senthong, Z Wang, XS Li, Y Fan, Y Wu, WH Tang, SL Hazen (2016b) Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.115.002816
87 M Shimizu, M Hashiguchi, T Shiga, HO Tamura, M Mochizuki (2015) Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 10:e0139795
https://doi.org/10.1371/journal.pone.0139795
88 WH Tang, SL Hazen (2017) The gut microbiome and its role in cardiovascular diseases. Circulation 135:1008–1010
https://doi.org/10.1161/CIRCULATIONAHA.116.024251
89 WH Tang, Z Wang, BS Levison, RA Koeth, EB Britt, X Fu, Y Wu, SL Hazen (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584
https://doi.org/10.1056/NEJMoa1109400
90 WH Tang, Z Wang, Y Fan, B Levison, JE Hazen, LM Donahue, Y Wu, SL Hazen (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914
https://doi.org/10.1016/j.jacc.2014.02.617
91 WH Tang, Z Wang, K Shrestha, AG Borowski, Y Wu, RW Troughton, AL Klein, SL Hazen (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91–96
https://doi.org/10.1016/j.cardfail.2014.11.006
92 A Trichopoulou, C Bamia, D Trichopoulos (2009) Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 338:b2337
https://doi.org/10.1136/bmj.b2337
93 PJ Turnbaugh (2020) Diet should be a tool for researchers, not a treatment. Nature 577:S23
https://doi.org/10.1038/d41586-020-00202-5
94 E Vaghef-Mehrabany, L Vaghef-Mehrabany, M Asghari-Jafarabadi, A Homayouni-Rad, K Issazadeh, B Alipour (2017) Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis: A randomized placebo-controlled clinical trial. Health Promot Perspect 7:95–101
https://doi.org/10.15171/hpp.2017.17
95 E van Nood, A Vrieze, M Nieuwdorp, S Fuentes, EG Zoetendal, WM de Vos, CE Visser, EJ Kuijper, JF Bartelsman, JG Tijssenet al. (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415
https://doi.org/10.1056/NEJMoa1205037
96 A Vrieze, E Van Nood, F Holleman, J Salojarvi, RS Kootte, JF Bartelsman, GM Dallinga-Thie, MT Ackermans, MJ Serlie, R Oozeeret al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(913–916):e917
https://doi.org/10.1053/j.gastro.2012.06.031
97 J Walter, AM Armet, BB Finlay, F Shanahan (2020) Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180:221–232
https://doi.org/10.1016/j.cell.2019.12.025
98 Z Wang, Y Zhao (2018) Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9:416–431
https://doi.org/10.1007/s13238-018-0549-0
99 Z Wang, E Klipfell, BJ Bennett, R Koeth, BS Levison, B Dugar, AE Feldstein, EB Britt, X Fu, YM Chunget al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
https://doi.org/10.1038/nature09922
100 Z Wang, WH Tang, JA Buffa, X Fu, EB Britt, RA Koeth, BS Levison, Y Fan, Y Wu, SL Hazen (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910
https://doi.org/10.1093/eurheartj/ehu002
101 Z Wang, AB Roberts, JA Buffa, BS Levison, W Zhu, E Org, X Gu, Y Huang, M Zamanian-Daryoush, MK Culleyet al. (2015) Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595
https://doi.org/10.1016/j.cell.2015.11.055
102 L Wang, Q Zhu, A Lu, X Liu, L Zhang, C Xu, X Liu, H Li, T Yang (2017) Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 35:1899–1908
https://doi.org/10.1097/HJH.0000000000001378
103 N Wilck, MG Matus, SM Kearney, SW Olesen, K Forslund, H Bartolomaeus, S Haase, A Mahler, A Balogh, L Markoet al. (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589
https://doi.org/10.1038/nature24628
104 XM Wu, RX Tan (2019) Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 36:788–809
https://doi.org/10.1039/C8NP00041G
105 S Xiao, N Fei, X Pang, J Shen, L Wang, B Zhang, M Zhang, X Zhang, C Zhang, M Liet al. (2014) A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357–367
https://doi.org/10.1111/1574-6941.12228
106 Z Xu, R Knight (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113(Suppl):S1–5
https://doi.org/10.1017/S0007114514004127
107 L Xue, J He, N Gao, X Lu, M Li, X Wu, Z Liu, Y Jin, J Liu, J Xuet al. (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176
https://doi.org/10.1038/srep45176
108 Q Yan, Y Gu, X Li, W Yang, L Jia, C Chen, X Han, Y Huang, L Zhao, P Liet al. (2017) Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7:381
https://doi.org/10.3389/fcimb.2017.00381
109 T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, M Zadeh, M Gong, Y Qi, J Zubcevicet al. (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340
https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
110 F Zhang, B Cui, X He, Y Nie, K Wu, D Fan, FMSS Group (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462–473
https://doi.org/10.1007/s13238-018-0541-8
111 F Zhang, T Zhang, H Zhu, TJ Borody (2019) Evolution of fecal microbiota transplantation in methodology and ethical issues. Curr Opin Pharmacol 49:11–16
https://doi.org/10.1016/j.coph.2019.04.004
112 X Zhou, J Li, J Guo, B Geng, W Ji, Q Zhao, J Li, X Liu, J Liu, Z Guoet al. (2018) Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6:66
https://doi.org/10.1186/s40168-018-0441-4
113 W Zhu, K Lin, K Li, X Deng, C Li (2018) Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food Funct 9:541–551
https://doi.org/10.1039/C7FO00995J
114 EE Ziganshina, DM Sharifullina, AP Lozhkin, RN Khayrullin, IM Ignatyev, AM Ziganshin (2016) Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE 11:e0164836
https://doi.org/10.1371/journal.pone.0164836
115 K Zuo, J Li, K Li, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, H Wanget al. (2019a) Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 8.
https://doi.org/10.1093/gigascience/giz058
116 K Zuo, J Li, P Wang, Y Liu, Z Liu, X Yin, X Liu, X Yang (2019b) Duration of persistent atrial fibrillation is associated with alterations in human gut microbiota and metabolic phenotypes. mSystems 4.
https://doi.org/10.1128/mSystems.00422-19
117 K Zuo, J Li, Q Xu, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, Q Yinet al. (2019c) Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 42:710
https://doi.org/10.1002/clc.23195
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed