Gut microbes in cardiovascular diseases and their potential therapeutic applications
Ling Jin1, Xiaoming Shi2, Jing Yang2, Yangyu Zhao2, Lixiang Xue1(), Li Xu3(), Jun Cai4()
1. Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China 2. Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China 3. Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China 4. Hypertension center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
Microbial ecosystem comprises a complex community in which bacteria interact with each other. The potential roles of the intestinal microbiome play in human health have gained considerable attention. The imbalance of gut microbial community has been looked to multiple chronic diseases. Cardiovascular diseases (CVDs) are leading causes of morbidity worldwide and are influenced by genetic and environmental factors. Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome. In this review, we highlight the complex interplay between microbes, their metabolites, and the potential influence on the generation and development of CVDs. The therapeutic potential of using intestinal microbiomes to treat CVD is also discussed. It is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.
Corresponding Author(s):
Lixiang Xue,Li Xu,Jun Cai
引用本文:
. [J]. Protein & Cell, 2021, 12(5): 346-359.
Ling Jin, Xiaoming Shi, Jing Yang, Yangyu Zhao, Lixiang Xue, Li Xu, Jun Cai. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell, 2021, 12(5): 346-359.
S Adnan, JW Nelson, NJ Ajami, VR Venna, JF Petrosino, RM Jr Bryan, DJ Durgan (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49:96–104 https://doi.org/10.1152/physiolgenomics.00081.2016
2
EC Aguilar, AJ Leonel, LG Teixeira, AR Silva, JF Silva, JM Pelaez, LS Capettini, VS Lemos, RA Santos, JI Alvarez-Leite (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis 24:606–613 https://doi.org/10.1016/j.numecd.2014.01.002
3
AF Ahmad, G Dwivedi, F O’Gara, J Caparros-Martin, NC Ward (2019) The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 317:H923–H938 https://doi.org/10.1152/ajpheart.00376.2019
4
LJ Appel, TJ Moore, E Obarzanek, WM Vollmer, LP Svetkey, FM Sacks, GA Bray, TM Vogt, JA Cutler, MM Windhauseret al. (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336:1117–1124 https://doi.org/10.1056/NEJM199704173361601
5
MAK Azad, M Sarker, T Li, J Yin (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630 https://doi.org/10.1155/2018/9478630
6
H Bartolomaeus, A Balogh, M Yakoub, S Homann, L Marko, S Hoges, D Tsvetkov, A Krannich, S Wundersitz, EG Averyet al. (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407–1421 https://doi.org/10.1161/CIRCULATIONAHA.118.036652
7
ML Battson, DM Lee, DK Jarrell, S Hou, KE Ecton, TL Weir, CL Gentile (2018a) Suppression of gut dysbiosis reverses Western dietinduced vascular dysfunction. Am J Physiol Endocrinol Metab 314:E468–E477 https://doi.org/10.1152/ajpendo.00187.2017
8
ML Battson, DM Lee, TL Weir, CL Gentile (2018b) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1–15 https://doi.org/10.1016/j.jnutbio.2017.12.010
9
E Blacher, M Levy, E Tatirovsky, E Elinav (2017) Microbiomemodulated metabolites at the interface of host immunity. J Immunol 198:572–580 https://doi.org/10.4049/jimmunol.1601247
10
VE Brunt, RA Gioscia-Ryan, AG Casso, NS VanDongen, BP Ziemba, ZJ Sapinsley, JJ Richey, MC Zigler, AP Neilson, KP Davyet al. (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76:101–112 https://doi.org/10.1161/HYPERTENSIONAHA.120.14759
11
CA Cason, KT Dolan, G Sharma, M Tao, R Kulkarni, IB Helenowski, BM Doane, MJ Avram, MM McDermott, EB Changet al. (2018) Plasma microbiome-modulated indoleand phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(1552–1562):e1557 https://doi.org/10.1016/j.jvs.2017.09.029
12
DJ Castillo, RF Rifkin, DA Cowan, M Potgieter (2019) The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol 9:148 https://doi.org/10.3389/fcimb.2019.00148
13
YK Chan, MS Brar, PV Kirjavainen, Y Chen, J Peng, D Li, FC Leung, H El-Nezami (2016a) High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE (-/-) mice. BMC Microbiol 16:264 https://doi.org/10.1186/s12866-016-0883-4
14
YK Chan, H El-Nezami, Y Chen, K Kinnunen, PV Kirjavainen (2016b) Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 6:61 https://doi.org/10.1186/s13568-016-0229-5
15
S Chen, A Henderson, MC Petriello, KA Romano, M Gearing, J Miao, M Schell, WJ Sandoval-Espinola, J Tao, B Shaet al. (2019) Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30(1141–1151):e1145 https://doi.org/10.1016/j.cmet.2019.08.021
16
YJ Cheng, XY Nie, XM Chen, XX Lin, K Tang, WT Zeng, WY Mei, LJ Liu, M Long, FJ Yaoet al. (2015) The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol 66:2173–2184 https://doi.org/10.1016/j.jacc.2015.09.029
JC Clemente, LK Ursell, LW Parfrey, R Knight (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270 https://doi.org/10.1016/j.cell.2012.01.035
19
X Cui, L Ye, J Li, L Jin, W Wang, S Li, M Bao, S Wu, L Li, B Genget al. (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635 https://doi.org/10.1038/s41598-017-18756-2
20
LA David, CF Maurice, RN Carmody, DB Gootenberg, JE Button, BE Wolfe, AV Ling, AS Devlin, Y Varma, MA Fischbachet al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563 https://doi.org/10.1038/nature12820
F De Filippis, N Pellegrini, L Vannini, IB Jeffery, A La Storia, L Laghi, DI Serrazanetti, R Di Cagno, I Ferrocino, C Lazziet al. (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821 https://doi.org/10.1136/gutjnl-2015-309957
23
MS Desai, AM Seekatz, NM Koropatkin, N Kamada, CA Hickey, M Wolter, NA Pudlo, S Kitamoto, N Terrapon, A Mulleret al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(1339–1353):e1321 https://doi.org/10.1016/j.cell.2016.10.043
24
V Dinakaran, L John, A Rathinavel, P Gunasekaran, J Rajendhran (2012) Prevalence of bacteria in the circulation of cardiovascular disease patients, Madurai, India. Heart Lung Circ 21:281–283 https://doi.org/10.1016/j.hlc.2012.02.007
25
V Dinakaran, A Rathinavel, M Pushpanathan, R Sivakumar, P Gunasekaran, J Rajendhran (2014) Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS ONE 9:e105221 https://doi.org/10.1371/journal.pone.0105221
26
DR Donohoe, N Garge, X Zhang, W Sun, TM O’Connell, MK Bunger, SJ Bultman (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526 https://doi.org/10.1016/j.cmet.2011.02.018
27
SH Duncan, A Belenguer, G Holtrop, AM Johnstone, HJ Flint, GE Lobley (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078 https://doi.org/10.1128/AEM.02340-06
28
DJ Durgan, BP Ganesh, JL Cope, NJ Ajami, SC Phillips, JF Petrosino, EB Hollister, RM Jr Bryan (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469–474 https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
29
F Fak, F Backhed (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/mice. PLoS ONE 7:e46837 https://doi.org/10.1371/journal.pone.0046837
30
EA Franzosa, T Hsu, A Sirota-Madi, A Shafquat, G Abu-Ali, XC Morgan, C Huttenhower (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372 https://doi.org/10.1038/nrmicro3451
31
K Fukami, S Yamagishi, K Sakai, Y Kaida, M Yokoro, S Ueda, Y Wada, M Takeuchi, M Shimizu, H Yamazakiet al. (2015) Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol 65:289–295 https://doi.org/10.1097/FJC.0000000000000197
32
XT Gan, G Ettinger, CX Huang, JP Burton, JV Haist, V Rajapurohitam, JE Sidaway, G Martin, GB Gloor, JR Swannet al. (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7:491–499 https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978
33
LF Gomez-Arango, HL Barrett, HD McIntyre, LK Callaway, M Morrison, M Dekker Nitert, ST Group (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–981 https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
34
M Gomez-Guzman, M Toral, M Romero, R Jimenez, P Galindo, M Sanchez, MJ Zarzuelo, M Olivares, J Galvez, J Duarte (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59:2326–2336 https://doi.org/10.1002/mnfr.201500290
35
A Gozd-Barszczewska, M Koziol-Montewka, P Barszczewski, A Mlodzinska, K Huminska (2017) Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med 24:416–422 https://doi.org/10.26444/aaem/75456
36
SI Halkjaer, AH Christensen, BZS Lo, PD Browne, S Gunther, LH Hansen, AM Petersen (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebocontrolled study. Gut 67:2107–2115 https://doi.org/10.1136/gutjnl-2018-316434
37
K He, Y Hu, H Ma, Z Zou, Y Xiao, Y Yang, M Feng, X Li, X Ye (2016) Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 1862:1696–1709 https://doi.org/10.1016/j.bbadis.2016.06.006
38
JW Honour, SP Borriello, U Ganten, P Honour (1985) Antibiotics attenuate experimental hypertension in rats. J Endocrinol 105:347–350 https://doi.org/10.1677/joe.0.1050347
39
Y Huang, J Wang, G Quan, X Wang, L Yang, L Zhong (2014) Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 80:7496–7504 https://doi.org/10.1128/AEM.02926-14
40
VM Isabella, BN Ha, MJ Castillo, DJ Lubkowicz, SE Rowe, YA Millet, CL Anderson, N Li, AB Fisher, KA Westet al. (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857–864 https://doi.org/10.1038/nbt.4222
41
Z Jie, H Xia, SL Zhong, Q Feng, S Li, S Liang, H Zhong, Z Liu, Y Gao, H Zhaoet al. (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845 https://doi.org/10.1038/s41467-017-00900-1
42
M Jin, Z Qian, J Yin, W Xu, X Zhou (2019) The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 23:2343–2350 https://doi.org/10.1111/jcmm.14195
43
T Kamo, H Akazawa, W Suda, A Saga-Kamo, Y Shimizu, H Yagi, Q Liu, S Nomura, AT Naito, N Takedaet al. (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12:e0174099 https://doi.org/10.1371/journal.pone.0174099
44
C Karlsson, S Ahrne, G Molin, A Berggren, I Palmquist, GN Fredrikson, B Jeppsson (2010) Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 208:228–233 https://doi.org/10.1016/j.atherosclerosis.2009.06.019
45
FH Karlsson, F Fak, I Nookaew, V Tremaroli, B Fagerberg, D Petranovic, F Backhed, J Nielsen (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245 https://doi.org/10.1038/ncomms2266
46
K Kasahara, KA Krautkramer, E Org, KA Romano, RL Kerby, EI Vivas, M Mehrabian, JM Denu, F Backhed, AJ Lusiset al. (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461–1471 https://doi.org/10.1038/s41564-018-0272-x
47
S Khalesi, J Sun, N Buys, R Jayasinghe (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64:897–903 https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
48
S Khalesi, N Bellissimo, C Vandelanotte, S Williams, D Stanley, C Irwin (2019) A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr 73:24–37 https://doi.org/10.1038/s41430-018-0135-9
49
RA Koeth, Z Wang, BS Levison, JA Buffa, E Org, BT Sheehy, EB Britt, X Fu, Y Wu, L Liet al. (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585 https://doi.org/10.1038/nm.3145
50
V Lam, J Su, S Koprowski, A Hsu, JS Tweddell, P Rafiee, GJ Gross, NH Salzman, JE Baker (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735 https://doi.org/10.1096/fj.11-197921
51
V Lam, J Su, A Hsu, GJ Gross, NH Salzman, JE Baker (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11:e0160840 https://doi.org/10.1371/journal.pone.0160840
52
KN Lam, M Alexander, PJ Turnbaugh (2019) Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe 26:22–34 https://doi.org/10.1016/j.chom.2019.06.011
53
M Li, X Shu, H Xu, C Zhang, L Yang, L Zhang, G Ji (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14:237 https://doi.org/10.1186/s12967-016-0987-5
54
J Li, F Zhao, Y Wang, J Chen, J Tao, G Tian, S Wu, W Liu, Q Cui, B Genget al. (2017a) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14 https://doi.org/10.1186/s40168-016-0222-x
55
XS Li, S Obeid, R Klingenberg, B Gencer, F Mach, L Raber, S Windecker, N Rodondi, D Nanchen, O Mulleret al. (2017b) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824 https://doi.org/10.1093/eurheartj/ehw582
R Lopez-Mejias, F Genre, M Garcia-Bermudez, B Ubilla, S Castaneda, J Llorca, C Gonzalez-Juanatey, A Corrales, JA Miranda-Filloy, T Pinaet al. (2014) Lack of association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and carotid intima-media thickness, carotid plaques, and cardiovascular disease in patients with rheumatoid arthritis. Mediators Inflamm 2014:756279 https://doi.org/10.1155/2014/756279
58
M Luedde, T Winkler, FA Heinsen, MC Ruhlemann, ME Spehlmann, A Bajrovic, W Lieb, A Franke, SJ Ott, N Frey (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282–290 https://doi.org/10.1002/ehf2.12155
59
P Mamic, PA Heidenreich, H Hedlin, L Tennakoon, KL Staudenmayer (2016) Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile infection rates and in-hospital mortality. J Card Fail 22:891–900 https://doi.org/10.1016/j.cardfail.2016.06.005
60
FZ Marques, E Nelson, PY Chu, D Horlock, A Fiedler, M Ziemann, JK Tan, S Kuruppu, NW Rajapakse, A El-Ostaet al. (2017) Highfiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977 https://doi.org/10.1161/CIRCULATIONAHA.116.024545
61
P Maruvada, V Leone, LM Kaplan, EB Chang (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22:589–599 https://doi.org/10.1016/j.chom.2017.10.005
62
B Mell, VR Jala, AV Mathew, J Byun, H Waghulde, Y Zhang, B Haribabu, M Vijay-Kumar, S Pennathur, B Joe (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47:187–197 https://doi.org/10.1152/physiolgenomics.00136.2014
63
A Mencarelli, S Cipriani, B Renga, A Bruno, C D’Amore, E Distrutti, S Fiorucci (2012) VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 7:e45425 https://doi.org/10.1371/journal.pone.0045425
64
G Molin (2001) Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380S–385S https://doi.org/10.1093/ajcn/73.2.380s
65
M Naruszewicz, ML Johansson, D Zapolska-Downar, H Bukowska (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255 https://doi.org/10.1093/ajcn/76.6.1249
66
N Natarajan, D Hori, S Flavahan, J Steppan, NA Flavahan, DE Berkowitz, JL Pluznick (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G proteincoupled receptor 41. Physiol Genomics 48:826–834 https://doi.org/10.1152/physiolgenomics.00089.2016
67
I Nemet, PP Saha, N Gupta, W Zhu, KA Romano, SM Skye, T Cajka, ML Mohan, L Li, Y Wuet al. (2020) A cardiovascular diseaselinked gut microbial metabolite acts via adrenergic receptors. Cell 180(862–877):e822 https://doi.org/10.1016/j.cell.2020.02.016
68
SJ Ott, NE El Mokhtari, M Musfeldt, S Hellmig, S Freitag, A Rehman, T Kuhbacher, S Nikolaus, P Namsolleck, M Blautet al. (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937 https://doi.org/10.1161/CIRCULATIONAHA.105.579979
69
T Ozdal, DA Sela, J Xiao, D Boyacioglu, F Chen, E Capanoglu (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78 https://doi.org/10.3390/nu8020078
70
E Pasini, R Aquilani, C Testa, P Baiardi, S Angioletti, F Boschi, M Verri, F Dioguardi (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220–227 https://doi.org/10.1016/j.jchf.2015.10.009
71
J Pluznick (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–207 https://doi.org/10.4161/gmic.27492
72
JL Pluznick, RJ Protzko, H Gevorgyan, Z Peterlin, A Sipos, J Han, I Brunet, LX Wan, F Rey, T Wanget al. (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415 https://doi.org/10.1073/pnas.1215927110
73
R Poesen, K Claes, P Evenepoel, H de Loor, P Augustijns, D Kuypers, B Meijers (2016) Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 27:3479–3487 https://doi.org/10.1681/ASN.2015121302
74
LR Portugal, JL Goncalves, LR Fernandes, HP Silva, RM Arantes, JR Nicoli, LQ Vieira, JI Alvarez-Leite (2006) Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res 39:629–635 https://doi.org/10.1590/S0100-879X2006000500010
75
Y Qi, JM Aranda, V Rodriguez, MK Raizada, CJ Pepine (2015) Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol 201:157–158 https://doi.org/10.1016/j.ijcard.2015.07.078
76
J Qin, R Li, J Raes, M Arumugam, KS Burgdorf, C Manichanh, T Nielsen, N Pons, F Levenez, T Yamadaet al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 https://doi.org/10.1038/nature08821
77
J Rajendhran, M Shankar, V Dinakaran, A Rathinavel, P Gunasekaran (2013) Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol 168:5118–5120 https://doi.org/10.1016/j.ijcard.2013.07.232
78
AB Roberts, X Gu, JA Buffa, AG Hurd, Z Wang, W Zhu, N Gupta, SM Skye, DB Cody, BS Levisonet al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407–1417 https://doi.org/10.1038/s41591-018-0128-1
79
C Ronda, SP Chen, V Cabral, SJ Yaung, HH Wang (2019) Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 16:167–170 https://doi.org/10.1038/s41592-018-0301-y
80
A Sandek, J Bauditz, A Swidsinski, S Buhner, J Weber-Eibel, S von Haehling, W Schroedl, T Karhausen, W Doehner, M Rauchhauset al. (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569 https://doi.org/10.1016/j.jacc.2007.07.016
81
A Sandek, I Bjarnason, HD Volk, R Crane, JB Meddings, J Niebauer, PR Kalra, S Buhner, R Herrmann, J Springeret al. (2012) Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 157:80–85 https://doi.org/10.1016/j.ijcard.2010.12.016
82
MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, CT ColeJeffrey, GO Lobaton, DC Stewart, A Rubianoet al. (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120:312–323 https://doi.org/10.1161/CIRCRESAHA.116.309006
MM Seldin, Y Meng, H Qi, W Zhu, Z Wang, SL Hazen, AJ Lusis, DM Shih (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.115.002767
85
V Senthong, Z Wang, Y Fan, Y Wu, SL Hazen, WH Tang (2016a) Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.116.004237
86
V Senthong, Z Wang, XS Li, Y Fan, Y Wu, WH Tang, SL Hazen (2016b) Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 5. https://doi.org/10.1161/JAHA.115.002816
87
M Shimizu, M Hashiguchi, T Shiga, HO Tamura, M Mochizuki (2015) Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 10:e0139795 https://doi.org/10.1371/journal.pone.0139795
WH Tang, Z Wang, BS Levison, RA Koeth, EB Britt, X Fu, Y Wu, SL Hazen (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584 https://doi.org/10.1056/NEJMoa1109400
90
WH Tang, Z Wang, Y Fan, B Levison, JE Hazen, LM Donahue, Y Wu, SL Hazen (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914 https://doi.org/10.1016/j.jacc.2014.02.617
91
WH Tang, Z Wang, K Shrestha, AG Borowski, Y Wu, RW Troughton, AL Klein, SL Hazen (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91–96 https://doi.org/10.1016/j.cardfail.2014.11.006
92
A Trichopoulou, C Bamia, D Trichopoulos (2009) Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 338:b2337 https://doi.org/10.1136/bmj.b2337
E Vaghef-Mehrabany, L Vaghef-Mehrabany, M Asghari-Jafarabadi, A Homayouni-Rad, K Issazadeh, B Alipour (2017) Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis: A randomized placebo-controlled clinical trial. Health Promot Perspect 7:95–101 https://doi.org/10.15171/hpp.2017.17
95
E van Nood, A Vrieze, M Nieuwdorp, S Fuentes, EG Zoetendal, WM de Vos, CE Visser, EJ Kuijper, JF Bartelsman, JG Tijssenet al. (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415 https://doi.org/10.1056/NEJMoa1205037
96
A Vrieze, E Van Nood, F Holleman, J Salojarvi, RS Kootte, JF Bartelsman, GM Dallinga-Thie, MT Ackermans, MJ Serlie, R Oozeeret al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(913–916):e917 https://doi.org/10.1053/j.gastro.2012.06.031
97
J Walter, AM Armet, BB Finlay, F Shanahan (2020) Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180:221–232 https://doi.org/10.1016/j.cell.2019.12.025
Z Wang, E Klipfell, BJ Bennett, R Koeth, BS Levison, B Dugar, AE Feldstein, EB Britt, X Fu, YM Chunget al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 https://doi.org/10.1038/nature09922
100
Z Wang, WH Tang, JA Buffa, X Fu, EB Britt, RA Koeth, BS Levison, Y Fan, Y Wu, SL Hazen (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910 https://doi.org/10.1093/eurheartj/ehu002
101
Z Wang, AB Roberts, JA Buffa, BS Levison, W Zhu, E Org, X Gu, Y Huang, M Zamanian-Daryoush, MK Culleyet al. (2015) Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595 https://doi.org/10.1016/j.cell.2015.11.055
102
L Wang, Q Zhu, A Lu, X Liu, L Zhang, C Xu, X Liu, H Li, T Yang (2017) Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 35:1899–1908 https://doi.org/10.1097/HJH.0000000000001378
103
N Wilck, MG Matus, SM Kearney, SW Olesen, K Forslund, H Bartolomaeus, S Haase, A Mahler, A Balogh, L Markoet al. (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589 https://doi.org/10.1038/nature24628
104
XM Wu, RX Tan (2019) Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 36:788–809 https://doi.org/10.1039/C8NP00041G
105
S Xiao, N Fei, X Pang, J Shen, L Wang, B Zhang, M Zhang, X Zhang, C Zhang, M Liet al. (2014) A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357–367 https://doi.org/10.1111/1574-6941.12228
L Xue, J He, N Gao, X Lu, M Li, X Wu, Z Liu, Y Jin, J Liu, J Xuet al. (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176 https://doi.org/10.1038/srep45176
108
Q Yan, Y Gu, X Li, W Yang, L Jia, C Chen, X Han, Y Huang, L Zhao, P Liet al. (2017) Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7:381 https://doi.org/10.3389/fcimb.2017.00381
109
T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, M Zadeh, M Gong, Y Qi, J Zubcevicet al. (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340 https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
110
F Zhang, B Cui, X He, Y Nie, K Wu, D Fan, FMSS Group (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462–473 https://doi.org/10.1007/s13238-018-0541-8
111
F Zhang, T Zhang, H Zhu, TJ Borody (2019) Evolution of fecal microbiota transplantation in methodology and ethical issues. Curr Opin Pharmacol 49:11–16 https://doi.org/10.1016/j.coph.2019.04.004
112
X Zhou, J Li, J Guo, B Geng, W Ji, Q Zhao, J Li, X Liu, J Liu, Z Guoet al. (2018) Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6:66 https://doi.org/10.1186/s40168-018-0441-4
113
W Zhu, K Lin, K Li, X Deng, C Li (2018) Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food Funct 9:541–551 https://doi.org/10.1039/C7FO00995J
114
EE Ziganshina, DM Sharifullina, AP Lozhkin, RN Khayrullin, IM Ignatyev, AM Ziganshin (2016) Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE 11:e0164836 https://doi.org/10.1371/journal.pone.0164836
115
K Zuo, J Li, K Li, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, H Wanget al. (2019a) Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 8. https://doi.org/10.1093/gigascience/giz058
116
K Zuo, J Li, P Wang, Y Liu, Z Liu, X Yin, X Liu, X Yang (2019b) Duration of persistent atrial fibrillation is associated with alterations in human gut microbiota and metabolic phenotypes. mSystems 4. https://doi.org/10.1128/mSystems.00422-19
117
K Zuo, J Li, Q Xu, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, Q Yinet al. (2019c) Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 42:710 https://doi.org/10.1002/clc.23195