Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2022, Vol. 13 Issue (4): 258-280   https://doi.org/10.1007/s13238-020-00794-8
  本期目录
Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells
Lei Chang1,6, Mengfan Li2,3, Shipeng Shao1, Chen Li4, Shanshan Ai4, Boxin Xue1, Yingping Hou2,3, Yiwen Zhang1, Ruifeng Li2,3, Xiaoying Fan6, Aibin He2,4, Cheng Li3,5(), Yujie Sun1()
1. State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
2. Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
3. Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
4. Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
5. Center for Statistical Science, Peking University, Beijing 100871, China
6. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510530, China
 全文: PDF(5005 KB)  
Abstract

The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the interchromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.

Key wordslamin B1    3D genome    Hi-C    chromatin dynamics    chromosome territories    A/B compartments    livecell imaging    super-resolution imaging
收稿日期: 2020-06-29      出版日期: 2022-04-21
Corresponding Author(s): Cheng Li,Yujie Sun   
 引用本文:   
. [J]. Protein & Cell, 2022, 13(4): 258-280.
Lei Chang, Mengfan Li, Shipeng Shao, Chen Li, Shanshan Ai, Boxin Xue, Yingping Hou, Yiwen Zhang, Ruifeng Li, Xiaoying Fan, Aibin He, Cheng Li, Yujie Sun. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells. Protein Cell, 2022, 13(4): 258-280.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-020-00794-8
https://academic.hep.com.cn/pac/CN/Y2022/V13/I4/258
1 S Ai, Y Peng, C Li, F, Gu X Yu, Y, Yue Q Ma, J Chen, Z Lin, P Zhouet al. (2017) EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent. eLife 6: e24570
https://doi.org/10.7554/eLife.24570
2 J, Akhtar P, More S Albrecht, F Marini, W, Kaiser A Kulkarni, L Wojnowski, J-F, Fontaine MA Andrade-Navarro, M Silieset al. (2019) TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay. Life science alliance 2: e201900318
https://doi.org/10.26508/lsa.201900318
3 B Albert, J Mathon, A Shukla, H Saad, C Normand, I Leger-Silvestre, D Villa, A Kamgoue, J Mozziconacci, H Wonget al. (2013) Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. J Cell Biol 202:201–210
https://doi.org/10.1083/jcb.201208186
4 M Amendola, BV Steensel (2015) Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells. EMBO Rep 16:610–617
https://doi.org/10.15252/embr.201439789
5 LJ Barton, AA Soshnev, PK Geyer (2015) Networking in the nucleus: a spotlight on LEM-domain proteins. Curr Opin Cell Biol 34:1–8
https://doi.org/10.1016/j.ceb.2015.03.005
6 B Bintu, LJ Mateo, J-H Su, NA Sinnott-Armstrong, M Parker, S Kinrot, K Yamaya, AN Boettiger, X Zhuang (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783
https://doi.org/10.1126/science.aau1783
7 AN Boettiger, B Bintu, JR Moffitt, S Wang, BJ Beliveau, G Fudenberg, M Imakaev, LA Mirny, CT Wu, X Zhuang (2016) Superresolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–422
https://doi.org/10.1038/nature16496
8 T Brakemann, AC Stiel, G Weber, M Andresen, I Testa, T Grotjohann, M Leutenegger, U Plessmann, H Urlaub, C Eggelinget al. (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29:942–947
https://doi.org/10.1038/nbt.1952
9 N Briand, P Collas (2018) Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus 9:216–226
https://doi.org/10.1080/19491034.2018.1449498
10 N Briand, P Collas (2020) Lamina-associated domains: peripheral matters and internal affairs. Genome Biol 21:85–85
https://doi.org/10.1186/s13059-020-02003-5
11 I Bronshtein, E Kepten, I Kanter, S Berezin, M Lindner, AB Redwood, S Mai, S Gonzalo, R Foisner, Y Shav-Talet al. (2015) Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat Commun 6:8044
https://doi.org/10.1038/ncomms9044
12 J Camps, D Wangsa, M Falke, M Brown, CM Case, MR Erdos, T Ried (2014) Loss of lamin B1 results in prolongation of S phase and decondensation of chromosome territories. FASEB J 28:3423–3434
https://doi.org/10.1096/fj.14-250456
13 NW Cho, RL Dilley, MA Lampson, RA Greenberg (2014) Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159:108–121
https://doi.org/10.1016/j.cell.2014.08.030
14 CH Chuang, AE Carpenter, B Fuchsova, T Johnson, P de Lanerolle, AS Belmont (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831
https://doi.org/10.1016/j.cub.2006.03.059
15 JR Chubb, S Boyle, P Perry, WA Bickmore (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445
https://doi.org/10.1016/S0960-9822(02)00695-4
16 E, Crane Q Bian, RP McCord, BR Lajoie, BS Wheeler, EJ Ralston, S Uzawa, J, Dekker BJ Meyer (2015) Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523:240–244
https://doi.org/10.1038/nature14450
17 M Cremer, K Küpper, B Wagler, L Wizelman, JV Hase, Y Weiland, L Kreja, J Diebold, MR Speicher, T Cremer (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162:809–820
https://doi.org/10.1083/jcb.200304096
18 JA Croft, JM Bridger, S Boyle, P Perry, P Teague, WA Bickmore (1999) Differences in the localization and morphology of chromosomes in the human nucleus . J Cell Biol 145:1119–1131
https://doi.org/10.1083/jcb.145.6.1119
19 J Dekker, K Rippe, M Dekker, N Kleckner (2002) Capturing chromosome conformation. Science 295:1306–1311
https://doi.org/10.1126/science.1067799
20 N Dimitrova, Y-CM Chen, DL Spector, T de Lange (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528
https://doi.org/10.1038/nature07433
21 CR Dixon, M Platani, AA Makarov, EC Schirmer (2017) Microinjection of antibodies targeting the lamin A/C histone-binding site blocks mitotic entry and reveals separate chromatin interactions with HP1, CenpB and PML. Cells 6:9
https://doi.org/10.3390/cells6020009
22 JR Dixon, S Selvaraj, F Yue, A Kim, Y Li, Y Shen, M Hu, JS Liu, B Ren (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380
https://doi.org/10.1038/nature11082
23 J Dostie, TA Richmond, RA Arnaout, RR Selzer, WL Lee, TA Honan, ED Rubio, A Krumm, J Lamb, C Nusbaumet al. (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309
https://doi.org/10.1101/gr.5571506
24 Z Du, H Zheng, B Huang, R Ma, J Wu, X Zhang, J He, Y Xiang, Q Wang, Y Liet al. (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232–235
https://doi.org/10.1038/nature23263
25 M Falk, Y Feodorova, N Naumova, M Imakaev, BR Lajoie, H Leonhardt, B Joffe, J, Dekker G Fudenberg, I Soloveiet al. (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570:395–399
https://doi.org/10.1038/s41586-019-1275-3
26 H Fan, P, Lv X Huo, J Wu, Q Wang, L Cheng, Y Liu , QQ Tang, L Zhang, F Zhanget al. (2018) The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 28:192–202
https://doi.org/10.1101/gr.224576.117
27 MJ Fullwood, MH Liu, YF Pan, J Liu, H Xu, YB Mohamed, YL Orlov, S Velkov, A Ho, PH Meiet al. (2009) An oestrogen-receptor-α-bound human chromatin interactome. Nature 462:58–64
https://doi.org/10.1038/nature08497
28 K Gesson, P, Rescheneder MP Skoruppa, A von Haeseler, T, Dechat R Foisner (2016) A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res 26:462–473
https://doi.org/10.1101/gr.196220.115
29 C Goto, K Tamura, Y Fukao, T, Shimada I Hara-Nishimura(2014) The novel nuclear envelope protein KAKU4 modulates nuclear morphology in arabidopsis. Plant Cell 26:2143–2155
https://doi.org/10.1105/tpc.113.122168
30 Y, Gruenbaum R Foisner (2015) Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem 84:131–164
https://doi.org/10.1146/annurev-biochem-060614-034115
31 B Gu, T Swigut, A Spencley, MR Bauer, M Chung, T Meyer, J Wysocka (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055
https://doi.org/10.1126/science.aao3136
32 L Guelen, L Pagie, E Brasset, W Meuleman, MB Faza, W Talhout, BH Eussen, A de Klein , L Wessels, W de Laatet al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951
https://doi.org/10.1038/nature06947
33 JHI Haarhuis, RH van der Weide, VA Blomen, JO Yanez-Cuna, M Amendola, MS van Ruiten, PHL Krijger, H Teunissen, RH Medema, BV Steenselet al. (2017) The cohesin release factor WAPL restricts chromatin loop extension. Cell 169(693–707):e614
https://doi.org/10.1016/j.cell.2017.04.013
34 H Hajjoul, J Mathon, H Ranchon, I Goiffon, J Mozziconacci, B Albert, P Carrivain, JM Victor, O Gadal, K Bystrickyet al. (2013) Highthroughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Res 23:1829–1838
https://doi.org/10.1101/gr.157008.113
35 CY Ho, J Lammerding (2012) Lamins at a glance. J Cell Sci 125:2087–2093
https://doi.org/10.1242/jcs.087288
36 B Hu, N Wang, X Bi, ES Karaaslan, A-L Weber, W Zhu, KW Berendzen, C Liu (2019) Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biol 20:87
https://doi.org/10.1186/s13059-019-1694-3
37 MR Hubner, DL Spector (2010) Chromatin dynamics. Annu Rev Biophys 39:471–489
https://doi.org/10.1146/annurev.biophys.093008.131348
38 X Huo, L Ji, Y Zhang, P Lv, X Cao, Q Wang, Z Yan, S Dong, D Du, F Zhanget al. (2020) The nuclear matrix protein SAFB cooperates with major satellite RNAs to stabilize heterochromatin architecture partially through phase separation. Mol Cell 77:368–383
https://doi.org/10.1016/j.molcel.2019.10.001
39 M Imakaev, G, Fudenberg RP McCord, N Naumova, A Goloborodko, BR Lajoie, J Dekker, LA Mirny (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003
https://doi.org/10.1038/nmeth.2148
40 M Izumi, OA Vaughan, CJ Hutchison, DM Gilbert (2000) Head and/or CaaX domain deletions of lamin proteins disrupt preformed lamin A and C but not lamin B structure in mammalian cells. Mol Biol Cell 11:4323–4337
https://doi.org/10.1091/mbc.11.12.4323
41 K Jaqaman, D Loerke, M Mettlen, H Kuwata, S Grinstein, SL Schmid, G Danuser (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702
https://doi.org/10.1038/nmeth.1237
42 A Javer, Z Long, E Nugent, M Grisi, K Siriwatwetchakul, KD Dorfman, P Cicuta, M Cosentino-Lagomarsino (2013) Short-time movement of E. coli chromosomal loci depends on coordinate and subcellular localization. Nat Commun 4:3003
https://doi.org/10.1038/ncomms3003
43 L Ji, X Huo, Y Zhang, Z Yan, Q Wang, B Wen (2020) TOPORS, a tumor suppressor protein, contributes to the maintenance of higher-order chromatin architecture. Biochim Biophys Acta 1863:194518
https://doi.org/10.1016/j.bbagrm.2020.194518
44 D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
45 KD Kim, H, Tanizawa O Iwasaki, CJ Corcoran, JR Capizzi, JE Hayden, K Noma (2013) Centromeric motion facilitates the mobility of interphase genomic regions in fission yeast. JCellSci 126:5271–5283
https://doi.org/10.1242/jcs.133678
46 J Kind, L Pagie, SS de Vries , L Nahidiazar, SS Dey, M Bienko, Y Zhan, B Lajoie, CA de Graaf, M Amendolaet al. (2015) Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163:134–147
https://doi.org/10.1016/j.cell.2015.08.040
47 J, Kind L Pagie, H Ortabozkoyun, S Boyle, SS de Vries, H, Janssen M Amendola, LD Nolen, WA Bickmore, BV Steensel (2013) Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–192
https://doi.org/10.1016/j.cell.2013.02.028
48 J, Kind BV Steensel (2014) Stochastic genome-nuclear lamina interactions: modulating roles of Lamin A and BAF. Nucleus 5:124–130
https://doi.org/10.4161/nucl.28825
49 N Korfali, GS Wilkie, SK Swanson, V Srsen, JDL Heras, DG Batrakou, P, Malik N Zuleger, ARW Kerr, L Florenset al. (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3:552–564
https://doi.org/10.4161/nucl.22257
50 A Krishan (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193
https://doi.org/10.1083/jcb.66.1.188
51 MV Kuleshov, MR Jones, AD Rouillard, NF Fernandez, Q, Duan Z Wang, S Koplev, SL Jenkins, KM Jagodnik, A Lachmannet al. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90
https://doi.org/10.1093/nar/gkw377
52 B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
53 MF Lawrence, W Huber, H Pagès, P Aboyoun, M Carlson, R Gentleman, MT Morgan, VJ Carey (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9:e1003118
https://doi.org/10.1371/journal.pcbi.1003118
54 J Lerner, PA Gomez-Garcia, RL McCarthy, Z Liu, M Lakadamyali, KS Zaret (2020) Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol Cell 79:677
https://doi.org/10.1016/j.molcel.2020.05.036
55 M Li, J Gan, Y Sun, Z Xu, J, Yang Y, Sun C Li (2020) Architectural proteins for the formation and maintenance of the 3D genome. Sci China Life Sci 63:795–810
https://doi.org/10.1007/s11427-019-1613-3
56 E Lieberman-Aiden, NL van Berkum, L Williams, M Imakaev, T Ragoczy, A Telling, I Amit, BR Lajoie, PJ Sabo, MO Dorschneret al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293
https://doi.org/10.1126/science.1181369
57 L Liu, G Shi, D Thirumalai, C Hyeon (2018) Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. PLoS Comput Biol 14:e1006617
https://doi.org/10.1371/journal.pcbi.1006617
58 MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550–550
https://doi.org/10.1186/s13059-014-0550-8
59 E Lund, AR Oldenburg, P Collas (2014) Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Res 42:e92
https://doi.org/10.1093/nar/gku324
60 YB Luo, FL Mastaglia, SD Wilton (2014) Normal and aberrant splicing of LMNA. J Med Genet 51:215–223
https://doi.org/10.1136/jmedgenet-2013-102119
61 TR Luperchio, ME Sauria, X Wong, M-C Gaillard, P Tsang, K Pekrun, RA Ach, NA Yamada, J Taylor, K Reddy (2017) Chromosome conformation paints reveal the role of lamina association in genome organization and regulation. bioRxiv
https://doi.org/10.1101/122226
62 H Ma, A Naseri, P Reyes-Gutierrez, SA Wolfe, S Zhang, T Pederson (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112:3002–3007
https://doi.org/10.1073/pnas.1420024112
63 PG Maass, AR Barutcu, CL Weiner, JL Rinn (2018) Inter-chromosomal contact properties in live-cell imaging and in Hi-C. Mol Cell 69:1039–1045
https://doi.org/10.1016/j.molcel.2018.02.007
64 W Meuleman, D Peric-Hupkes, J Kind, J-B, Beaudry L Pagie, M Kellis, M Reinders, L Wessels, BV Steensel (2013) Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res 23:270–280
https://doi.org/10.1101/gr.141028.112
65 T Nagano, Y Lubling, TJ Stevens, S Schoenfelder, E Yaffe, W Dean, ED Laue, A Tanay, P Fraser (2013) Single-cell Hi-C reveals cellto-cell variability in chromosome structure. Nature 502:59–64
https://doi.org/10.1038/nature12593
66 EP Nora, A Goloborodko, AL Valton, JH Gibcus, A Uebersohn, N Abdennur, J Dekker, LA Mirny, BG Bruneau (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944
https://doi.org/10.1016/j.cell.2017.05.004
67 EP Nora, BR Lajoie, EG Schulz, L Giorgetti, I Okamoto, N Servant, T Piolot, NL van Berkum, J, Meisig J Sedatet al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385
https://doi.org/10.1038/nature11049
68 T Nozaki, R Imai, M Tanbo, R Nagashima, S Tamura, T Tani, Y Joti, M Tomita, K, Hibino MT Kanemakiet al. (2017) Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell 67:282–293
https://doi.org/10.1016/j.molcel.2017.06.018
69 J Nuebler, G, Fudenberg M Imakaev, N Abdennur, LA Mirny(2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci USA 115:E6697–E6706
https://doi.org/10.1073/pnas.1717730115
70 H Ochiai, T Sugawara, T Yamamoto (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127
https://doi.org/10.1093/nar/gkv624
71 MD Pierro, DA Potoyan, PG Wolynes, JN Onuchic (2018) Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. Proc Natl Acad Sci USA 115:7753–7758
https://doi.org/10.1073/pnas.1806297115
72 SS Rao, MH Huntley, NC Durand, EK Stamenova, ID Bochkov, JT Robinson, AL Sanborn, I Machol, AD Omer, ES Landeret al. (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680
https://doi.org/10.1016/j.cell.2014.11.021
73 SSP Rao, SC Huang, St Glenn B Hilaire, JM Engreitz, EM Perez, KR Kieffer-Kwon, AL Sanborn, SE Johnstone, GD Bascom, ID Bochkovet al. (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320
https://doi.org/10.1016/j.cell.2017.09.026
74 MA Ricci, C Manzo, MF Garcia-Parajo, M Lakadamyali, MP Cosma (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160:1145–1158
https://doi.org/10.1016/j.cell.2015.01.054
75 J Ruan, C Xu, C, Bian R, Lam JP Wang, J Kania, J Min, J Zang (2012) Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett 586:314–318
https://doi.org/10.1016/j.febslet.2012.01.007
76 MJ Rust, M Bates, X Zhuang (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795
https://doi.org/10.1038/nmeth929
77 AN Sawh, MER Shafer, J-H Su, X Zhuang, S Wang, SE Mango (2020) Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol Cell 78:96–111
https://doi.org/10.1016/j.molcel.2020.02.006
78 EC Schirmer, T Guan, L Gerace (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J Cell Biol 153:479–490
https://doi.org/10.1083/jcb.153.3.479
79 W Schwarzer, N Abdennur, A Goloborodko, A Pekowska, G Fudenberg, Y Loe-Mie , NA Fonseca, W Huber, CH Haering, L Mirnyet al. (2017) Two independent modes of chromatin organization revealed by cohesin removal. Nature 551:51–56
https://doi.org/10.1038/nature24281
80 N Servant, BR Lajoie, EP Nora, L Giorgetti, CJ Chen, E Heard, J Dekker, E Barillot (2012) HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics 28:2843–2844
https://doi.org/10.1093/bioinformatics/bts521
81 N, Servant N Varoquaux, BR Lajoie, E Viara, C-J Chen, J-P Vert, E Heard, J Dekker, E Barillot (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259
https://doi.org/10.1186/s13059-015-0831-x
82 S Shao, B Xue, Y Sun (2018) Intranucleus single-molecule imaging in living cells. Biophys J 115:181–189
https://doi.org/10.1016/j.bpj.2018.05.017
83 T, Shimi K, Pfleghaar S Kojima, CG Pack, I Solovei, AE Goldman, SA Adam, DK Shumaker, M Kinjo, T Cremeret al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421
https://doi.org/10.1101/gad.1735208
84 M Simonis, P Klous, E Splinter, Y Moshkin, R Willemsen, E de Wit, BV Steensel, W de Laat (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354
https://doi.org/10.1038/ng1896
85 I Solovei, K Thanisch, Y Feodorova(2016) How to rule the nucleus: divide et impera. Curr Opin Cell Biol 40:47–59
https://doi.org/10.1016/j.ceb.2016.02.014
86 I Solovei, AS Wang, K Thanisch, CS Schmidt, S Krebs, M Zwerger, TV Cohen, D Devys, R Foisner, L Peichlet al. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598
https://doi.org/10.1016/j.cell.2013.01.009
87 BV Steensel, AS Belmont (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791
https://doi.org/10.1016/j.cell.2017.04.022
88 HB Sun, J Shen, H Yokota (2000) Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J 79:184–190
https://doi.org/10.1016/S0006-3495(00)76282-5
89 A Tajik, Y Zhang, F Wei, J Sun, Q Jia, W Zhou, R Singh, N Khanna, AS Belmont, N Wang (2016) Transcription upregulation via forceinduced direct stretching of chromatin. Nat Mater 15:1287–1296
https://doi.org/10.1038/nmat4729
90 ME Tanenbaum, LA Gilbert, LS Qi, JS Weissman, RD Vale (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646
https://doi.org/10.1016/j.cell.2014.09.039
91 BD Towbin, C González-Aguilera, R Sack, D Gaidatzis, V Kalck, P Meister, P Askjaer, SM Gasser (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947
https://doi.org/10.1016/j.cell.2012.06.051
92 SV Ulianov, SA Doronin, EE Khrameeva, PI Kos, AV Luzhin, SS Starikov, AA Galitsyna, VV Nenasheva, AA Ilyin, IM Flyameret al. (2019) Nuclear lamina integrity is required for proper spatial organization of chromatin in Drosophila. Nat Commun 10:1176
https://doi.org/10.1038/s41467-019-09185-y
93 JM Verboon, H Rincon-Arano, TR Werwie, JJ Delrow, D Scalzo, V Nandakumar, M Groudine, SM Parkhurst (2015) Wash interacts with lamin and affects global nuclear organization. Curr Biol 25:804–810
https://doi.org/10.1016/j.cub.2015.01.052
94 JS Verdaasdonk, PA Vasquez, RM Barry, T Barry, S Goodwin, MG Forest, K Bloom (2013) Centromere tethering confines chromosome domains. Mol Cell 52:819–831
https://doi.org/10.1016/j.molcel.2013.10.021
95 PH Viollier, M Thanbichler, PT McGrath, L West, M Meewan, HH McAdams, L Shapiro (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci USA 101:9257–9262
https://doi.org/10.1073/pnas.0402606101
96 A Vivante, E Brozgol, I Bronshtein, V Levi, Y Garini(2018) Chromatin dynamics governed by a set of nuclear structural proteins. Genes Chromos Cancer 58:437
https://doi.org/10.1002/gcc.22719
97 N Wagner, G Krohne (2007) LEM-domain proteins: new insights into lamin-interacting proteins. Int Rev Cytol Surv Cell Biol 261:1–46
https://doi.org/10.1016/S0074-7696(07)61001-8
98 S Wang, JH Su, BJ Beliveau, B Bintu, JR Moffitt, CT Wu, X Zhuang (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:598–602
https://doi.org/10.1126/science.aaf8084
99 G, Wutz C Várnai, K Nagasaka, DA Cisneros, RR Stocsits, W Tang, S, Schoenfelder G Jessberger, M Muhar, MJ Hossainet al. (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J 36:3573–3599
https://doi.org/10.15252/embj.201798004
100 X Zheng, J Hu, S Yue, L Kristiani, M Kim, M Sauria, J Taylor, Y Kim, Y Zheng (2018) Lamins organize the global three-dimensional genome from the nuclear periphery. Mol Cell 71:802–815
https://doi.org/10.1016/j.molcel.2018.05.017
101 A Zidovska, DA Weitz, TJ Mitchison (2013) Micron-scale coherence in interphase chromatin dynamics. Proc Natl Acad Sci USA 110:15555–15560
https://doi.org/10.1073/pnas.1220313110
102 M Zwerger, H Roschitzki-Voser, R Zbinden, C Denais, H Herrmann, J Lammerding, MG Grütter , O Medalia (2015) Altering lamina assembly reveals lamina-dependent and-independent functions for A-type lamins. J Cell Sci 128:3607–3620
https://doi.org/10.1242/jcs.171843
[1] PAC-0258-20525-CL_suppl_1 Download
[2] PAC-0258-20525-CL_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed