Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2022, Vol. 13 Issue (7): 513-531   https://doi.org/10.1007/s13238-020-00795-7
  本期目录
Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda
Furong Gui1,12, Tianming Lan2,9, Yue Zhao1, Wei Guo3,15, Yang Dong1,12, Dongming Fang2, Huan Liu2,9, Haimeng Li2, Hongli Wang2, Ruoshi Hao12, Xiaofang Cheng5, Yahong Li16, Pengcheng Yang4, Sunil Kumar Sahu2, Yaping Chen1, Le Cheng7, Shuqi He1, Ping Liu5, Guangyi Fan6, Haorong Lu8,10, Guohai Hu8,10, Wei Dong2, Bin Chen1, Yuan Jiang18, Yongwei Zhang18, Hanhong Xu17, Fei Lin17, Bernard Slipper19, Alisa Postma19, Matthew Jackson19, Birhan Addisie Abate20, Kassahun Tesfaye20,21, Aschalew Lemma Demie20, Meseret Destaw Bayeleygne20, Dawit Tesfaye Degefu22, Feng Chen5, Paul K. Kuria23, Zachary M. Kinyua23, Tong-Xian Liu13, Huanming Yang10,11, Fangneng Huang1,4(), Xin Liu2,10(), Jun Sheng1,12(), Le Kang3,4,15()
1. State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
2. State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
3. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
4. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
5. MGI, BGI-Shenzhen, Shenzhen 518083, China
6. BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
7. BGI-Yunnan, No. 389 Haiyuan Road, High-tech Development Zone, Kunming 650106, China
8. China National GeneBank, Jinsha Road, Dapeng New District, Shenzhen 518120, China
9. Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
10. Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
11. Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
12. Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming 650201, China
13. College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
14. Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
15. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
16. Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
17. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
18. BGI-Americas, One Broadway, 14th Floor, Cambridge, MA 02142, USA
19. Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
20. Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
21. College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
22. Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Melkassa, Addis Ababa, Ethiopia
23. Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi 00800, Kenya
 全文: PDF(5943 KB)  
Abstract

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared resequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.

Key wordsSpodoptera frugiperda    chromosome-level genome    population differentiation    cytochrome p450    pesticides
收稿日期: 2020-06-03      出版日期: 2022-07-21
Corresponding Author(s): Fangneng Huang,Xin Liu,Jun Sheng,Le Kang   
 引用本文:   
. [J]. Protein & Cell, 2022, 13(7): 513-531.
Furong Gui, Tianming Lan, Yue Zhao, Wei Guo, Yang Dong, Dongming Fang, Huan Liu, Haimeng Li, Hongli Wang, Ruoshi Hao, Xiaofang Cheng, Yahong Li, Pengcheng Yang, Sunil Kumar Sahu, Yaping Chen, Le Cheng, Shuqi He, Ping Liu, Guangyi Fan, Haorong Lu, Guohai Hu, Wei Dong, Bin Chen, Yuan Jiang, Yongwei Zhang, Hanhong Xu, Fei Lin, Bernard Slipper, Alisa Postma, Matthew Jackson, Birhan Addisie Abate, Kassahun Tesfaye, Aschalew Lemma Demie, Meseret Destaw Bayeleygne, Dawit Tesfaye Degefu, Feng Chen, Paul K. Kuria, Zachary M. Kinyua, Tong-Xian Liu, Huanming Yang, Fangneng Huang, Xin Liu, Jun Sheng, Le Kang. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell, 2022, 13(7): 513-531.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1007/s13238-020-00795-7
https://academic.hep.com.cn/pac/CN/Y2022/V13/I7/513
1 JJ Jr Adamczyk, JW Holloway, BR Leonard, I Graves (1997) Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton. J Cotton Sci 1:21–28
2 DH Alexander, J Novembre, K Lange (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19 (9):1655–1664
https://doi.org/10.1101/gr.094052.109
3 TL Bailey, N Williams, C Misleh, WW Li (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server):W369–W373
https://doi.org/10.1093/nar/gkl198
4 W Bao, KK Kojima, O Kohany (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11
https://doi.org/10.1186/s13100-015-0041-9
5 KW Bock (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: anima plant arms-race and co-evolution. Biochem Pharmacol 99(1):11–17
https://doi.org/10.1016/j.bcp.2015.10.001
6 CABI (2019) Data sheet Spodoptera frugiperda(fall armyworm). Invasive Species Compendium. . Accessed 26 April 2019
7 J Chang, I Yoon, J Lee, K Kim, J An, K Kim (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32(2):95–105
https://doi.org/10.1007/s10653-009-9268-z
8 W Chen, DK Hasegawa, N Kaur, A Kliot, PV Pinheiro, J, Luan MC Stensmyr, Y Zheng, W Liu, H Sun et al. (2016) The draft genome of whitefly Bemisia tabaciMEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110
https://doi.org/10.1186/s12915-016-0321-y
9 T Cheng, J Wu, Y Wu, RV Chilukuri, L Huang, K Yamamoto, L Feng, W Li, Z Chen, H Guo et al. (2017) Genomic adaptation to polyphagy and pesticides in a major East Asian noctuid pest. Nat Ecol Evol 1(11):1747–1756
https://doi.org/10.1038/s41559-017-0314-4
10 H Daly, JT Doyen, AH Purcell (1998) Introduction to insect biology and diversity. Oxford University Press, New York
11 P, Danecek A Auton, G Abecasis, CA Albers, E, Banks MA Depristo, RE Handsaker, G, Lunter GT Marth, ST Sherry et al. (2011) The variant call format and VCF tools. Bioinformatics 27(15):2156–2158
https://doi.org/10.1093/bioinformatics/btr330
12 KJ Downing, G Leslie, JA Thomson (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensiscry1Ac7 and Serratia marcescenschiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810
https://doi.org/10.1128/AEM.66.7.2804-2810.2000
13 O, Dudchenko SS Batra, AD Omer, SK Nyquist, M Hoeger, NC Durand, MS Shamim, I, Machol ES Lander, AP Aiden et al. (2017) De novo assembly of the Aedes aegyptigenome using Hi-C yields chromosome-length scaffolds. Science 356(6333):92–95
https://doi.org/10.1126/science.aal3327
14 MB Eisen, PT Spellman, PO Brown, D Botstein (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868
https://doi.org/10.1073/pnas.95.25.14863
15 MA Erlandson (2009) Genetic variation in field populations of baculoviruses: mechanisms for generating variation and its potential role in baculovirus epizootiology. Virol Sin 24(5):458–469
https://doi.org/10.1007/s12250-009-3052-1
16 B Farmer (2019) Fall armyworm marches on as pest that devastated African crops spreads in Asia. Telegraph. Accessed 26 April 2019
17 L Fu, B Niu, Z Zhu, S Wu, W Li (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152
https://doi.org/10.1093/bioinformatics/bts565
18 G Goergen, PL Kumar, SB Sankung, A Togola, M Tamò (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10):e165632
https://doi.org/10.1371/journal.pone.0165632
19 A Gouin, A Bretaudeau, K Nam, S Gimenez, JM Aury, B Duvic, F Hilliou, N, Durand N Montagné, I Darboux et al. (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges . Sci Rep 7:11816
https://doi.org/10.1038/s41598-017-10461-4
20 JD Hayes, DJ Pulford (2008) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance Part I. Crit Rev Biochem Mol 30(6):445–520
https://doi.org/10.3109/10409239509083491
21 T Herraiz, H Guillen, V Aran, J Idle, F Gonzalez (2006) Comparative aromatic hydroxylation and N-demethylation of MPTP neurotoxin and its analogs, N-methylated β-carboline and isoquinoline alkaloids, by human cytochrome P450 2D6. Toxicol Appl Pharmacol 216(3):387–398
https://doi.org/10.1016/j.taap.2006.06.003
22 WE Hinds, JA Dew (1915) The grass worm or fall army worm. Ala Agric Exp Stn Bull 186:61–92
23 J Huang, X Liang, Y Xuan, C Geng, Y Li, H Lu, S Qu, X Mei, H Chen, T Yu et al. (2017) A reference human genome dataset of the BGISEQ-500 sequencer. GigaScience 6(5):1–9
https://doi.org/10.1093/gigascience/gix024
24 G Iarmarcovai, S Bonassi, A Botta, RA Baan, T Orsière(2008) Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res/Rev Mutat Res 658(3):215–233
https://doi.org/10.1016/j.mrrev.2007.10.001
25 Insecticide Resistance Action Committee, IRAC (2019) IRAC susceptibility test methods series: method No. 018, version 3.4. www.irac-online.org. Accessed 13 Dec 2019
26 DP Jing, JF Guo, YY Jiang, JZ Zhao, A, Sethi KL He, ZY Wang (2019) Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci 27(4):1–11
https://doi.org/10.1111/1744-7917.12700
27 ML Juárez, G Schöfl, MT Vera, JC Vilardi, MG Murúa, E Willink, S, Hänniger DG Heckel, AT Groot (2014) Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol Exp Appl 152(3):182–199
https://doi.org/10.1111/eea.12215
28 PK Kakumani, P Malhotra, SK Mukherjee, RK Bhatnagar (2014) A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104(2):134–143
https://doi.org/10.1016/j.ygeno.2014.06.005
29 SM Kielbasa, R Wan, K Sato, P Horton, MC Frith (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21 (3):487–493
https://doi.org/10.1101/gr.113985.110
30 C Koenig, A Bretschneider, DG Heckel, E, Grosse-Wilde BS Hansson, H Vogel (2015) The plastic response of Manduca sexta to host and non-host plants. Insect Biochem Mol Biol 63:72–85
https://doi.org/10.1016/j.ibmb.2015.06.001
31 B Langmead (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinform 32(11):1–14
https://doi.org/10.1002/0471250953.bi1107s32
32 T Lee, H Guo, X Wang, C Kim, AH Paterson (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15(1):162
https://doi.org/10.1186/1471-2164-15-162
33 BH Liu, YJ Shi, JY Yuan, XS Hu, H, Zhang N Li, ZY Li, YX Chen, DS Mu, W Fan (2013) Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv.
34 H Li, R Durbin (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760
https://doi.org/10.1093/bioinformatics/btp324
35 H Li, B Handsaker, A Wysoker, T Fennell, J Ruan, N Homer, G Marth, G Abecasis, R Durbin(2009) The sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079
https://doi.org/10.1093/bioinformatics/btp352
36 XJ Li, MF Wu, J Ma, BY Gao, QL Wu, AD Chen, J Liu, YY Jiang, BP Zhai, RE Jason et al.(2019) Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach . Pest Manag Sci 76(2):454–463
https://doi.org/10.1002/ps.5530
37 E Lieberman-Aiden, NL van Berkum, L Williams, M Imakaev, T Ragoczy, A Telling, I Amit, BR Lajoie, PJ Sabo, MO Dorschner et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293
https://doi.org/10.1126/science.1181369
38 S Liu, MM Hansen (2017) PSMC (pairwise sequentially Markovian coalescent) analysis of RAD (restriction site associated DNA) sequencing data. Mol Ecol Resour 17(4):631–641
https://doi.org/10.1111/1755-0998.12606
39 R, Luo B Liu, Y Xie, Z, Li W Huang, J Yuan, G, He Y, Chen Q Pan, Y Liu et al. (2012) SOAPdenovo2: an empirically improved memoryefficient short-read de novo assembler. GigaScience 1:18
https://doi.org/10.1186/2047-217X-1-18
40 CP Mallapur, AK Naik, S Hagari, ST Prabhu, PK Patil (2018) Status of alien pest fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize in Northern Karnataka. J Entomol Zool Stud 6:432–436
41 A Mckenna, M Hanna, E Banks, A, Sivachenko K Cibulskis, A Kernytsky, K, Garimella D Altshuler, S Gabriel, M Daly et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303
https://doi.org/10.1101/gr.107524.110
42 RL Meagher, RN Nagoshi (2012) Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann Entomol Soc Am 105(3):462–470
https://doi.org/10.1603/AN11158
43 DG Montezano, A Specht, DR Sosa-Gómez, VF Roque-Specht, JC Sousa-Silva, SV Paula-Moraes, JA Peterson, TE Hunt (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300
https://doi.org/10.4001/003.026.0286
44 F Morillo, A Notz (2001) Resistance of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) to lambdacyhalothrin and methomyl. Entomotropica 16(2):79–87
45 RN Nagoshi, G, Goergen HD Plessis, J van den Berg, R Meagher (2019) Genetic comparisons of fall armyworm populations from 11 countries spanning Sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep 9:8311
https://doi.org/10.1038/s41598-019-44744-9
46 RN Nagoshi, G Goergen, KA Tounou, K Agboka, D, Koffi RL Meagher (2018) Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci Rep 8:3710
https://doi.org/10.1038/s41598-018-21954-1
47 RN Nagoshi, NN Htain, D Boughton, L Zhang, Y Xiao, BY Nagoshi, D Mota-Sanchez (2020) Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci Rep 10:1421
https://doi.org/10.1038/s41598-020-58249-3
48 RN Nagoshi, RL Meagher (2004) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87(4):440–449
https://doi.org/10.1653/0015-4040(2004)087[0440:BADOTT]2.0.CO;2
49 K Nam, S Gimenez, F, Hilliou CA Blanco, S Hänniger, A Bretaudeau, F Legeai, N Nègre, E d’Alencon (2019) Adaptation by copy number variation increases pesticide resistance in fall armyworms . bioRxiv.
https://doi.org/10.1101/812958
50 K Nam, S, Nhim S Robin, A Bretaudeau, N Nègre, E d’Alençon (2018) Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae). bioRxiv.
https://doi.org/10.1101/452870
51 S Nandakumar, H Ma, AS Khan (2017) Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line. Genome Announc 5(34):e00829–e917
https://doi.org/10.1128/genomeA.00829-17
52 RW Nowell, B Elsworth, V Oostra, BJ Zwaan, CW Wheat, M Saastamoinen, IJ Saccheri, T van AE Hof, BR Wasik, H Connahs et al. (2017) A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana . GigaScience 6(7):1–7
https://doi.org/10.1093/gigascience/gix035
53 DP Pashley (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79(6):898–904
https://doi.org/10.1093/aesa/79.6.898
54 P Pavlidis, D Ivković, A Stamatakis, N Alachiotis (2013) SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30(9):2224–2234
https://doi.org/10.1093/molbev/mst112
55 G Pertea, X Huang, F Liang, V Antonescu, R Sultana, S Karamycheva, Y, Lee J White, F Cheung, B Parvizi et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652
https://doi.org/10.1093/bioinformatics/btg034
56 J Pickrell, J Pritchard (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8 (11):e1002967
https://doi.org/10.1371/journal.pgen.1002967
57 S Purcell, B Neale, K Todd-Brown, L Thomas, MAR Ferreira, D Bender, J, Maller P Sklar, PIW de Bakker, MJ Daly et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575
https://doi.org/10.1086/519795
58 S Saha, S Bridges, ZV Magbanua, DG Peterson (2008) Empirical comparison of ab initio repeat finding programs . Nucleic Acids Res 36(7):2284–2294
https://doi.org/10.1093/nar/gkn064
59 AJ Saldanha (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248
https://doi.org/10.1093/bioinformatics/bth349
60 O Santos-Amaya, J Rodrigues, T Souza, C Tavares, S Campos, R Guedes, E Pereira (2016) Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance and cross-resistance to other transgenic events. Sci Rep 5:18243
https://doi.org/10.1038/srep18243
61 T Satoh, M Hosokawa (2009) Carboxylesterases: structure, function and polymorphism. Biomol Ther 17(4):335–347
https://doi.org/10.4062/biomolther.2009.17.4.335
62 AN Sparks (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–86
https://doi.org/10.2307/3494083
63 WT Tay, RJ Mahon, DG Heckel, TK Walsh, S Downes, WJ James, S Lee, A Reineke, AK Williams, KHJ Gordon (2015) Insect resistance to Bacillus thuringiensis toxin cry2ab is conferred by mutations in an abc transporter subfamily a protein. PLoS Genet 11:e1005534
https://doi.org/10.1371/journal.pgen.1005534
64 DA Triant, SD Cinel, AY Kawahara (2018) Lepidoptera genomes: current knowledge, gaps and future directions. Curr Opin Insect Sci 25:99–105
https://doi.org/10.1016/j.cois.2017.12.004
65 M, Unbehend S Hänniger, GM Vásquez, ML Juárez, D, Reisig JN McNeil, RL Meagher, DA Jenkins, DG Heckel, AT Groot (2014) Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males topheromone lures. PLoS ONE 9(2):e89255
https://doi.org/10.1371/journal.pone.0089255
66 K Wang, M Li, H Hakonarson (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164
https://doi.org/10.1093/nar/gkq603
67 O Wang, R, Chin X Cheng, MKY Wu, Q Mao, J Tang, Y, Sun E Anderson, HK Lam, D Chen et al. (2019) Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res 29(5):798–808
https://doi.org/10.1101/gr.245126.118
68 Y Wang, H Tang, JD Debarry, X, Tan J, Li X Wang, TH Lee, H, Jin B Marler, H Guo et al. (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49
https://doi.org/10.1093/nar/gkr1293
69 NI Weisenfeld, V Kumar, P, Shah DM Church, DB Jaffe (2017) Direct determination of diploid genome sequences. Genome Res 27 (5):757–767
https://doi.org/10.1101/gr.214874.116
70 JA Wenger, BJ Cassone, F, Legeai JS Johnston, R Bansal, AD Yates, BS Coates, VAC Pavinato, A Michel (2017) Whole genome sequence of the soybean aphid, Aphis glycines. Insect Biochem Mol 2017:102917
https://doi.org/10.1016/j.ibmb.2017.01.005
71 DP Weston, HC Poynton, GA Wellborn, MJ Lydy, BJ Blalock, MS Sepulveda, JK Colbourne (2013) Multiple origins of pyrethroid pesticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci USA 110(41):16532–16537
https://doi.org/10.1073/pnas.1302023110
72 QL Wu, LM He, XJ Shen, YY Jiang, J Liu, G Hu, KM Wu (2019) Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River Valley of China. Insects 10:298
https://doi.org/10.3390/insects10090298
73 HM Xiao, XH Ye, HX Xu, Y, Mei Y Yang, X, Chen YJ Yang, T Liu, YY Yu, WF Yang et al. (2020) The genetic adaptations of fall armyworm Spodoptera frugiperda facilitated its rapid global dispersal and invasion. Mol Ecol Resour 20(4):1050–1068
https://doi.org/10.1111/1755-0998.13182
74 J, Yang SH Lee, ME Goddard, PM Visscher (2011) GCTA: a tool for genome-wide complex trait analysis . Am J Hum Genet 88(1):76–82
https://doi.org/10.1016/j.ajhg.2010.11.011
75 Z Yang(1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556
https://doi.org/10.1093/bioinformatics/13.5.555
76 M You, Z Yue, W He, X Yang, G Yang, M Xie, D Zhan, SW Baxter, L Vasseur, GM Gurr et al. (2013) A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45 (2):220–225
https://doi.org/10.1038/ng.2524
77 L Zhang, B Liu, W Zheng, C Liu, D Zhang, S Zhao, P Xu, K Wilson, A Withers, CM Jones et al. (2019) High-depth resequencing reveals hybrid population and pesticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China. bioRxiv 2019: 813154.
https://doi.org/10.1101/813154
78 L Zhang, B Liu, W Zheng, C Liu, D Zhang, S Zhao, Z Li, P Xu, K Wilson, A Withers et al. (2020) Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol Ecol Resour.
https://doi.org/10.1111/1755-0998.13219
79 F Zhu, TW Moural, K Shah, SR Palli (2013) Integrated analysis of cytochrome P450 gene superfamily in the red flour beetle, Tribolium castaneum. BMC Genomics 14(1):174
https://doi.org/10.1186/1471-2164-14-174
[1] PAC-0513-20550-KL_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed