Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2023, Vol. 14 Issue (5): 350-368   https://doi.org/10.1093/procel/pwac010
  本期目录
Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration
Zekai Wu1, Yuan Shi1, Yueli Cui1,2, Xin Xing4, Liya Zhang1, Da Liu1, Yutian Zhang1, Ji Dong1,2, Li Jin3, Meijun Pang6, Rui-Ping Xiao3, Zuoyan Zhu1, Jing-Wei Xiong6, Xiangjun Tong1, Yan Zhang3,5(), Shiqiang Wang4(), Fuchou Tang1,2(), Bo Zhang1()
1. Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing 100871, China
2. Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing 100871, China
3. State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
4. State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
5. Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
6. Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
 全文: PDF(48172 KB)  
Abstract

Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.

Key wordsscRNA-seq    zebrafish    heart regeneration    Angpt4    EPDC
收稿日期: 2021-11-11      出版日期: 2023-05-29
Corresponding Author(s): Yan Zhang,Shiqiang Wang,Fuchou Tang,Bo Zhang   
 引用本文:   
. [J]. Protein & Cell, 2023, 14(5): 350-368.
Zekai Wu, Yuan Shi, Yueli Cui, Xin Xing, Liya Zhang, Da Liu, Yutian Zhang, Ji Dong, Li Jin, Meijun Pang, Rui-Ping Xiao, Zuoyan Zhu, Jing-Wei Xiong, Xiangjun Tong, Yan Zhang, Shiqiang Wang, Fuchou Tang, Bo Zhang. Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration. Protein Cell, 2023, 14(5): 350-368.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1093/procel/pwac010
https://academic.hep.com.cn/pac/CN/Y2023/V14/I5/350
1 S Bollini, JM Vieira, S Howard et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev 2014;23:1719–1730.
https://doi.org/10.1089/scd.2014.0019
2 A Butler, P Hoffman, P Smibert et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018;36:411–420.
https://doi.org/10.1038/nbt.4096
3 TJ Cahill, RP Choudhury, PR. Riley Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov 2017;16:699–717.
https://doi.org/10.1038/nrd.2017.106
4 ZL Cai, C Liu, Q Yao et al. The pro-migration and anti-apoptosis effects of HMGA2 in HUVECs stimulated by hypoxia. Cell Cycle 2020;19:3534–3545.
https://doi.org/10.1080/15384101.2020.1850970
5 J Cao, KD. Poss The epicardium as a hub for heart regeneration. Nat Rev Cardiol 2018;15:631–647.
https://doi.org/10.1038/s41569-018-0046-4
6 F Chablais, J Veit, G Rainer et al. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 2011;11:21.
https://doi.org/10.1186/1471-213X-11-21
7 N Chang, C Sun, L Gao et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 2013;23:465–472.
https://doi.org/10.1038/cr.2013.45
8 NC Chi, RM Shaw, B Jungblut et al. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biol 2008;6:e109.
https://doi.org/10.1371/journal.pbio.0060109
9 CH Cho, HK Sung, KT Kim et al. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA 2006;103:4946–4951.
https://doi.org/10.1073/pnas.0506352103
10 Y Cui, Y Zheng, X Liu et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep 2019;26:1934–1950.e5.
https://doi.org/10.1016/j.celrep.2019.01.079
11 S Davis, TH Aldrich, PF Jones et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 1996;87:1161–1169.
https://doi.org/10.1016/S0092-8674(00)81812-7
12 DEM de Bakker, M Bouwman, E Dronkers et al. Prrx1b restricts fibrosis and promotes Nrg1-dependent cardiomyocyte proliferation during zebrafish heart regeneration. Development 2021;148:dev198937.
https://doi.org/10.1242/dev.198937
13 A Dobin, CA Davis, F Schlesinger et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.
https://doi.org/10.1093/bioinformatics/bts635
14 J Duan, C Gherghe, D Liu et al. Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 2012;31:429–442.
https://doi.org/10.1038/emboj.2011.418
15 H Elamaa, M Kihlstrom, E Kapiainen et al. Angiopoietin-4-dependent venous maturation and fluid drainage in the peripheral retina. Elife 2018;7:e37776.
https://doi.org/10.7554/eLife.37776
16 W Fang, A He, MX Xiang et al. Cathepsin K-deficiency impairs mouse cardiac function after myocardial infarction. J Mol Cell Cardiol 2019;127:44–56.
https://doi.org/10.1016/j.yjmcc.2018.11.010
17 L Feng, RE Hernandez, JS Waxman et al. Dhrs3a regulates retinoic acid biosynthesis through a feedback inhibition mechanism. Dev Biol 2010;338:1–14.
https://doi.org/10.1016/j.ydbio.2009.10.029
18 CE Fernandez, M Bakovic, R. Karra Endothelial contributions to zebrafish heart regeneration. J Cardiovasc Dev Dis 2018;5:56.
https://doi.org/10.3390/jcdd5040056
19 M Fink, C Callol-Massot, A Chu et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 2009;46:101–113.
https://doi.org/10.2144/000113078
20 L Gamba, A Amin-Javaheri, J Kim et al. Collagenolytic activity is associated with scar resolution in zebrafish hearts after cryoinjury. J Cardiovasc Dev Dis 2017;4:2.
https://doi.org/10.3390/jcdd4010002
21 M Gemberling, R Karra, AL Dickson et al. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. Elife 2015;4:e05871.
https://doi.org/10.7554/eLife.05871
22 C. Gene Ontology The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res 2021;49:D325–D334.
23 JM Gonzalez-Rosa, CE Burns, CG. Burnss Zebrafish heart regeneration: 15 years of discoveries. Regeneration (Oxf) 2017;4:105–123.
https://doi.org/10.1002/reg2.83
24 JM Gonzalez-Rosa, V Martin, M Peralta et al. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development 2011;138:1663–1674.
https://doi.org/10.1242/dev.060897
25 V Grajevskaja, D Camerota, G Bellipanni et al. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018;13:e0197293.
https://doi.org/10.1371/journal.pone.0197293
26 D Grun, MJ Muraro, JC Boisset et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 2016;19:266–277.
https://doi.org/10.1016/j.stem.2016.05.010
27 P Han, XH Zhou, N Chang et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res 2014;24:1091–1107.
https://doi.org/10.1038/cr.2014.108
28 H Honkoop, DE de Bakker, A Aharonov et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. Elife 2019;8:e50163.
https://doi.org/10.7554/eLife.50163
29 H Huang, A Bhat, G Woodnutt et al. Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 2010;10:575–585.
https://doi.org/10.1038/nrc2894
30 S Huang, X Li, H Zheng et al. Loss of super-enhancer-regulated cir-cRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 2019;139:2857–2876.
https://doi.org/10.1161/CIRCULATIONAHA.118.038361
31 M Ieda, T Tsuchihashi, KN Ivey et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 2009;16:233–244.
https://doi.org/10.1016/j.devcel.2008.12.007
32 J Itou, I Oishi, H Kawakami et al. Migration of cardiomyocytes is essential for heart regeneration in zebrafish. Development 2012;139:4133–4142.
https://doi.org/10.1242/dev.079756
33 M Jessup, S. Brozena Heart failure. N Engl J Med 2003;348:2007–2018.
https://doi.org/10.1056/NEJMra021498
34 C Jopling, E Sleep, M Raya et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010;464:606–609.
https://doi.org/10.1038/nature08899
35 BG Ju, WS. Kim Upregulation of cathepsin D expression in the dedifferentiating salamander limb regenerates and enhancement of its expression by retinoic acid. Wound Repair Regen 1998;6:349–357.
https://doi.org/10.1046/j.1524-475X.1998.60410.x
36 R Kalfon, T Friedman, S Eliachar et al. JDP2 and ATF3 deficiencies dampen maladaptive cardiac remodeling and preserve cardiac function. PLoS One 2019;14:e0213081.
https://doi.org/10.1371/journal.pone.0213081
37 K Kawakami, H Takeda, N Kawakami et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 2004;7:133–144.
https://doi.org/10.1016/j.devcel.2004.06.005
38 CT Kesler, ER Pereira, CH Cui et al. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J 2015;29:3668–3677.
https://doi.org/10.1096/fj.14-268920
39 K Kikuchi, V Gupta, J Wang et al. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 2011a;138:2895–2902.
https://doi.org/10.1242/dev.067041
40 K Kikuchi, JE Holdway, RJ Major et al. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell 2011b;20:397–404.
https://doi.org/10.1016/j.devcel.2011.01.010
41 HJ Lee, SW Bae, GY Koh et al. COMP-Ang1, angiopoietin-1 variant protects radiation-induced bone marrow damage in C57BL/6 mice. J Radiat Res 2008;49:313–320.
https://doi.org/10.1269/jrr.07064
42 A Lepilina, AN Coon, K Kikuchi et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006;127:607–619.
https://doi.org/10.1016/j.cell.2006.08.052
43 L Li, J Dong, L Yan et al. Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. Cell Stem Cell 2017;20:891–892.
https://doi.org/10.1016/j.stem.2017.05.009
44 W Li, Y Zhang, B Han et al. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. Elife 2019;8:e48081.
https://doi.org/10.7554/eLife.48081
45 H Lie-Venema, NM van den Akker, NA Bax et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. ScientificWorldJournal 2007;7:1777–1798.
https://doi.org/10.1100/tsw.2007.294
46 P Liu, TP. Zhong MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol Lett 2017;39:1069–1077.
https://doi.org/10.1007/s10529-017-2327-0
47 AB Lourenco, M. Artal-Sanz The mitochondrial prohibitin (PHB) complex in C. elegans metabolism and ageing regulation. Metabolites 2021;11:636.
https://doi.org/10.3390/metabo11090636
48 CJ Lu, XY Fan, YF Guo et al. Single-cell analyses identify distinct and intermediate states of zebrafish pancreatic islet development. J Mol Cell Biol 2019;11:435–447.
https://doi.org/10.1093/jmcb/mjy064
49 MA Missinato, M Saydmohammed, DA Zuppo et al. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 2018;145:dev157206.
https://doi.org/10.1242/dev.157206
50 C Mosimann, CK Kaufman, P Li et al. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 2011;138:169–177.
https://doi.org/10.1242/dev.059345
51 N Paffett-Lugassy, N Novikov, S Jeffrey et al. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development 2017;144:4616–4624.
https://doi.org/10.1242/dev.153411
52 D Parmar, M. Apte Angiopoietin inhibitors: a review on targeting tumor angiogenesis. Eur J Pharmacol 2021;899:174021.
https://doi.org/10.1016/j.ejphar.2021.174021
53 S Picelli, OR Faridani, AK Bjorklund et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014;9:171–181.
https://doi.org/10.1038/nprot.2014.006
54 ER Porrello, AI Mahmoud, E Simpson et al. Transient regenerative potential of the neonatal mouse heart. Science 2011;331:1078–1080.
https://doi.org/10.1126/science.1200708
55 KD Poss, LG Wilson, MT. Keating Heart regeneration in zebrafish. Science 2002;298:2188–2190.
https://doi.org/10.1126/science.1077857
56 P Ren, L Xing, X Hong et al. LncRNA PITPNA-AS1 boosts the proliferation and migration of lung squamous cell carcinoma cells by recruiting TAF15 to stabilize HMGB3 mRNA. Cancer Med 2020;9:7706–7716.
https://doi.org/10.1002/cam4.3268
57 P Sallin, AS de Preux Charles, V Duruz et al. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev Biol 2015;399:27–40.
https://doi.org/10.1016/j.ydbio.2014.12.002
58 S Saneshige, H Mano, K Tezuka et al. Retinoic acid directly stimulates osteoclastic bone resorption and gene expression of cathepsin K/OC-2. Biochem J 1995;309:721–724.
https://doi.org/10.1042/bj3090721
59 YL Schindler, KM Garske, J Wang et al. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 2014;141:3112–3122.
https://doi.org/10.1242/dev.106336
60 K Schnabel, CC Wu, T Kurth et al. Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS One 2011;6:e18503.
https://doi.org/10.1371/journal.pone.0018503
61 R Sierpinski, K Josiak, T Suchocki et al. High soluble transferrin receptor in patients with heart failure: a measure of iron deficiency and a strong predictor of mortality. Eur J Heart Fail 2021;23:919–932.
https://doi.org/10.1002/ejhf.2036
62 T Smith, A Heger, I. Sudbery UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017;27:491–499.
https://doi.org/10.1101/gr.209601.116
63 Y Song, C Xu, J Liu et al. Heterodimerization With 5-HT2BR Is Indispensable for beta2AR-Mediated Cardioprotection. Circ Res 2021;128:262–277.
https://doi.org/10.1161/CIRCRESAHA.120.317011
64 N Tahara, M Brush, Y. Kawakami Cell migration during heart regeneration in zebrafish. Dev Dyn 2016;245:774–787.
https://doi.org/10.1002/dvdy.24411
65 G Tao, PC Kahr, Y Morikawa et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 2016;534:119–123.
https://doi.org/10.1038/nature17959
66 O Tarnavski, JR McMullen, M Schinke et al. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 2004;16:349–360.
https://doi.org/10.1152/physiolgenomics.00041.2003
67 JP Thiery, H Acloque, RY Huang et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009;139:871–890.
https://doi.org/10.1016/j.cell.2009.11.007
68 I Tirosh, B Izar, SM Prakadan et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016;352:189–196.
https://doi.org/10.1126/science.aad0501
69 X Tong, Y Zu, Z Li et al. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nat Commun 2014;5:3153.
https://doi.org/10.1038/ncomms4153
70 C Trapnell, D Cacchiarelli, J Grimsby et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014;32:381–386.
https://doi.org/10.1038/nbt.2859
71 A Uygur, RT. Lee Mechanisms of Cardiac Regeneration. Dev Cell 2016;36:362–374.
https://doi.org/10.1016/j.devcel.2016.01.018
72 JM Vieira, S Howard, C Villa Del Campo et al. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nat Commun 2017;8:16034.
https://doi.org/10.1038/ncomms16034
73 J Wang, J Cao, AL Dickson et al. Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling. Nature 2015;522:226–230.
https://doi.org/10.1038/nature14325
74 J Wang, R Karra, AL Dickson et al. Fibronectin is deposited by injury- activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol 2013a;382:427–435.
https://doi.org/10.1016/j.ydbio.2013.08.012
75 J Wang, D Panakova, K Kikuchi et al. The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion. Development 2011;138:3421–3430.
https://doi.org/10.1242/dev.068601
76 L Wang, T Liu, L Xu et al. Fev regulates hematopoietic stem cell development via ERK signaling. Blood 2013b;122:367–375.
https://doi.org/10.1182/blood-2012-10-462655
77 RS Wu, II Lam, H Clay et al. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish. Dev Cell 2018;46:112–125.
https://doi.org/10.1016/j.devcel.2018.06.003
78 W Xu, T Barrientos, L Mao et al. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart. Cell Rep 2015;13:533–545.
https://doi.org/10.1016/j.celrep.2015.09.023
79 SW Youn, HC Lee, SW Lee et al. COMP-Angiopoietin-1 accelerates muscle regeneration through N-cadherin activation. Sci Rep 2018;8:12323.
https://doi.org/10.1038/s41598-018-30513-7
80 C Zhang, Y Chen, B Sun et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature 2017;549:273–276.
https://doi.org/10.1038/nature23883
81 R Zhang, P Han, H Yang et al. In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature 2013;498:497–501.
https://doi.org/10.1038/nature12322
82 L Zhao, AL Borikova, R Ben-Yair et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA 2014;111:1403–1408.
https://doi.org/10.1073/pnas.1311705111
83 S Zhong, S Zhang, X Fan et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 2018;555:524–528.
https://doi.org/10.1038/nature25980
84 Y Zhou, B Zhou, L Pache et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10:1523.
https://doi.org/10.1038/s41467-019-09234-6
[1] PAC-0350-21574-ZB_suppl_1 Download
[2] PAC-0350-21574-ZB_suppl_1 Download
[3] PAC-0350-21574-ZB_suppl_2 Download
[4] PAC-0350-21574-ZB_suppl_3 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed