SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic
Ping Liu1, Junjie Hu1,2, Lei Wang1,2()
1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
. [J]. Protein & Cell, 2024, 15(2): 79-82.
Ping Liu, Junjie Hu, Lei Wang. SARS-CoV-2 ORF8 does not function in the nucleus as a histone mimic. Protein Cell, 2024, 15(2): 79-82.
B Alberts, J Alexander, L Julian et al. Chapter 12-Intracellular Compartments and Protein Sorting. Molecular biology of the cell (6th ed.). New York: Garland Science, 2015, 649–50.
2
K Barroso, E. Chevet Chapter 15-Epigenetic regulation of endoplasmic reticulum stress. Chromatin Signaling and Diseases. Boston: Academic Press, 2016, 271–85. https://doi.org/10.1016/B978-0-12-802389-1.00015-0
3
TG Flower, CZ Buffalo, RM Hooy et al. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc Natl Acad Sci U S A 2021;118:e2021785118. https://doi.org/10.1073/pnas.2021785118
Q Guo, S Sidoli, BA Garcia et al. Assessment of quantification precision of histone post-translational modifications by using an ion trap and down To 50 000 cells as starting material. J Proteome Res 2018;17:234–42. https://doi.org/10.1021/acs.jproteome.7b00544
7
DP Ha, R Van Krieken, AJ Carlos et al. The stress-inducible molecular chaperone GRP78 as potential therapeutic target for coronavirus infection. J Infect 2020;81:452–82. https://doi.org/10.1016/j.jinf.2020.06.017
8
J Kee, S Thudium, DM Renner et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022;610:381–88. https://doi.org/10.1038/s41586-022-05282-z
9
E Kohli, S Causse, V Baverel et al. Endoplasmic reticulum chaperones in viral infection: therapeutic perspectives. Microbiol Mol Biol Rev 2021;85:e0003521. https://doi.org/10.1128/MMBR.00035-21
10
P Liu, X Wang, Y Sun et al. SARS-CoV-2 ORF8 reshapes the ER through forming mixed disulfides with ER oxidoreductases. Redox Biol 2022;54:102388. https://doi.org/10.1016/j.redox.2022.102388
11
Z Ozturkler, R. Kalkan A new perspective of COVID-19 infection: an epigenetics point of view. Glob Med Genet 2021;9:4–6. https://doi.org/10.1055/s-0041-1736565
12
WJ Shin, DP Ha, K Machida et al. The stress-inducible ER chaperone GRP78/BiP is upregulated during SARS-CoV-2 infection and acts as a pro-viral protein. Nat Commun 2022;13:6551. https://doi.org/10.1038/s41467-022-34065-3
13
S Vinjamuri, L Li, M. Bouvier SARS-CoV-2 ORF8: one protein, seemingly one structure, and many functions. Front Immunol 2022;13:1035559. https://doi.org/10.3389/fimmu.2022.1035559
14
L Wang, CC. Wang Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem Sci 2023;48:40–52. https://doi.org/10.1016/j.tibs.2022.06.011
15
M Xue, L. Feng The role of unfolded protein response in coronavirus infection and its implications for drug design. Front Microbiol 2021;12:808593. https://doi.org/10.3389/fmicb.2021.808593