| 1 |
KNM Abdelazeem, MZ Kalo, S Beer-Hammer et al. The gut microbiota metabolite urolithin A inhibits NF-κB activation in LPS stimulated BMDMs. Sci Rep 2021;11:7117.
https://doi.org/10.1038/s41598-021-86514-6
|
| 2 |
G Al-Qadami, Y Van Sebille, H Le et al. Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol 2019;13:485–96.
https://doi.org/10.1080/17474124.2019.1595586
|
| 3 |
G Al-Qadami, G Verma, Y Van Sebille et al. Antibiotic-induced gut microbiota depletion accelerates the recovery of radiation-induced oral mucositis in rats. Int J Radiat Oncol Biol Phys 2022;113:845–58.
https://doi.org/10.1016/j.ijrobp.2022.03.036
|
| 4 |
L An, J Wuri, Z Zheng et al. Microbiota modulate Doxorubicin induced cardiotoxicity. Eur J Pharm Sci 2021;166:105977.
https://doi.org/10.1016/j.ejps.2021.105977
|
| 5 |
IM Aragón, B Herrera-Imbroda, MI Queipo-Ortuño et al. The urinary tract microbiome in health and disease. Eur Urol Focus 2018;4:128–38.
https://doi.org/10.1016/j.euf.2016.11.001
|
| 6 |
KA Ashack, V Kuritza, MJ Visconti et al. Dermatologic sequelae associated with radiation therapy. Am J Clin Dermatol 2020;21:541–55.
https://doi.org/10.1007/s40257-020-00519-x
|
| 7 |
H Bartolomaeus, A Balogh, M Yakoub et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 2019;139:1407–21.
https://doi.org/10.1161/CIRCULATIONAHA.118.036652
|
| 8 |
EN Baruch, I Youngster, G Ben-Betzalel et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021;371:602–9.
https://doi.org/10.1126/science.abb5920
|
| 9 |
BI Bell, J Vercellino, NP Brodin et al. Orthovoltage X-rays exhibit increased efficacy compared with gamma-rays in preclinical irradiation. Cancer Res 2022;82:2678–91.
https://doi.org/10.1158/0008-5472.CAN-22-0656
|
| 10 |
DM Berwick, K. Shine Enhancing private sector health system preparedness for 21st-century health threats: foundational principles from a national academies initiative. JAMA 2020;323:1133–4.
https://doi.org/10.1001/jama.2020.1310
|
| 11 |
Z Chen, B Wang, J Dong et al. Gut microbiota-derived l-histidine/ imidazole propionate axis fights against the radiation-induced cardiopulmonary injury. Int J Mol Sci 2021a;22:11436.
https://doi.org/10.3390/ijms222111436
|
| 12 |
ZY Chen, HW Xiao, JL Dong et al. Gut microbiota-derived PGF2α fights against radiation-induced lung toxicity through the MAPK/NF-κB pathway. Antioxidants (Basel) 2021b;11:65.
https://doi.org/10.3390/antiox11010065
|
| 13 |
I Chitapanarux, T Chitapanarux, P Traisathit et al. Randomized controlled trial of live lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol 2010;5:31.
https://doi.org/10.1186/1748-717X-5-31
|
| 14 |
SH Cohen, TJ Louie, M Sims et al. Extended follow-up of microbiome therapeutic SER-109 through 24 weeks for recurrent clostridioides difficile infection in a randomized clinical trial. JAMA 2022;328:2062–64.
https://doi.org/10.1001/jama.2022.16476
|
| 15 |
M Cui, H Xiao, Y Li et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017;9:448–61.
https://doi.org/10.15252/emmm.201606932
|
| 16 |
SC Darby, M Ewertz, P McGale et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 2013;368:987–98.
https://doi.org/10.1056/NEJMoa1209825
|
| 17 |
D Davar, AK Dzutsev, JA McCulloch et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021;371:595–602.
https://doi.org/10.1126/science.abf3363
|
| 18 |
RV David, AA Kahokehr, J Lee et al. Incidence of genitourinary complications following radiation therapy for localised prostate cancer. World J Urol 2022;40:2411–22.
https://doi.org/10.1007/s00345-022-04124-x
|
| 19 |
P Delia, G Sansotta, V Donato et al. Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol 2007;13:912–5.
https://doi.org/10.3748/wjg.v13.i6.912
|
| 20 |
F Deng, BC Zhao, X Yang et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes 2021;13:1–21.
https://doi.org/10.1080/19490976.2021.1902719
|
| 21 |
X Ding, Q Li, P Li et al. Fecal microbiota transplantation: a promising treatment for radiation enteritis? Radiother Oncol 2020;143:12–8.
https://doi.org/10.1016/j.radonc.2020.01.011
|
| 22 |
C Dingemanse, C Belzer, SA van Hijum et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 2015;36:1388–96.
https://doi.org/10.1093/carcin/bgv120
|
| 23 |
J Dong, Y Li, H Xiao et al. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models. Cell Rep 2021;37:109886.
https://doi.org/10.1016/j.celrep.2021.109886
|
| 24 |
LS Elting, CD Cooksley, MS Chambers et al. Risk, outcomes, and costs of radiation-induced oral mucositis among patients with head-and-neck malignancies. Int J Radiat Oncol Biol Phys 2007;68:1110–20.
https://doi.org/10.1016/j.ijrobp.2007.01.053
|
| 25 |
A Espinal, MW Epperly, A Mukherjee et al. Intestinal radiation protection and mitigation by second-generation probiotic Lactobacillus reuteri engineered to deliver inter-leukin-22. Int J Mol Sci 2022;23:5616.
https://doi.org/10.3390/ijms23105616
|
| 26 |
P Feuerstadt, TJ Louie, B Lashner et al. SER-109, an oral microbiome therapy for recurrent clostridioides difficile infection. N Engl J Med 2022;386:220–9.
https://doi.org/10.1056/NEJMoa2106516
|
| 27 |
RP. Gale Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism. Curr Opin Hematol 2017;24:496–501.
https://doi.org/10.1097/MOH.0000000000000380
|
| 28 |
S Gerassy-Vainberg, A Blatt, Y Danin-Poleg et al. Radiation induces proinflammatory dysbiosis: transmission of inflammatory susceptibility by host cytokine induction. Gut 2018;67:97–107.
https://doi.org/10.1136/gutjnl-2017-313789
|
| 29 |
EJ Grant, A Brenner, H Sugiyama et al. Solid cancer incidence among the life span study of atomic bomb survivors: 1958–2009. Radiat Res 2017;187:513–537.
https://doi.org/10.1667/RR14492.1
|
| 30 |
DE Green, CT. Rubin Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 2014;63:87–94.
https://doi.org/10.1016/j.bone.2014.02.018
|
| 31 |
H Guo, WC Chou, Y Lai et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 2020;370:eaay9097.
https://doi.org/10.1126/science.aay9097
|
| 32 |
WA Hall, E Paulson, XA Li et al. Magnetic resonance linear accelerator technology and adaptive radiation therapy: an overview for clinicians. CA Cancer J Clin 2022;72:34–56.
https://doi.org/10.3322/caac.21707
|
| 33 |
DF Hamade, A Espinal, J Yu et al. Lactobacillus reuteri releasing IL-22 (LR-IL-22) facilitates intestinal radioprotection for whole-abdomen irradiation (WAI) of ovarian cancer. Radiat Res 2022;198:89–105.
https://doi.org/10.1667/RADE-21-00224.1
|
| 34 |
V Hande, M Orita, H Matsunaga et al. Comparison of quality of life between elderly and non-elderly adult residents in Okuma town, Japan, in a post-disaster setting. PLoS One 2023;18:e0281678.
https://doi.org/10.1371/journal.pone.0281678
|
| 35 |
M Hauer-Jensen, JW Denham, HJ. Andreyev Radiation enteropathy—pathogenesis, treatment and prevention. Nat Rev Gastroenterol Hepatol 2014;11:470–9.
https://doi.org/10.1038/nrgastro.2014.46
|
| 36 |
T Hayashi, Y Morishita, R Khattree et al. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J 2012;26:4765–73.
https://doi.org/10.1096/fj.12-215228
|
| 37 |
WL Hsu, DL Preston, M Soda et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res 2013;179:361–82.
https://doi.org/10.1667/RR2892.1
|
| 38 |
L Hu, X Yin, Y Zhang et al. Radiation-induced bystander effects impair transplanted human hematopoietic stem cells via oxidative DNA damage. Blood 2021;137:3339–50.
https://doi.org/10.1182/blood.2020007362
|
| 39 |
M Janko, F Ontiveros, TJ Fitzgerald et al. IL-1 generated subsequent to radiation-induced tissue injury contributes to the pathogenesis of radiodermatitis. Radiat Res 2012;178:166–72.
https://doi.org/10.1667/RR3097.1
|
| 40 |
YP Jian, G Yang, LH Zhang et al. Lactobacillus plantarum alleviates irradiation-induced intestinal injury by activation of FXR-FGF15 signaling in intestinal epithelia. J Cell Physiol 2022;237:1845–56.
https://doi.org/10.1002/jcp.30651
|
| 41 |
K Jonak, M Kurpas, K Szoltysek et al. A novel mathematical model of ATM/p53/NF-κB pathways points to the importance of the DDR switch-off mechanisms. BMC Syst Biol 2016;10:75.
https://doi.org/10.1186/s12918-016-0293-0
|
| 42 |
B Karaman, B Battal, S Sari et al. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 2014;20:18059–60.
https://doi.org/10.3748/wjg.v20.i47.18059
|
| 43 |
S Khanna, M Assi, C Lee et al. Efficacy and safety of RBX2660 in PUNCH CD3, a Phase III, randomized, double-blind, placebo-controlled trial with a Bayesian primary analysis for the prevention of recurrent clostridioides difficile infection. Drugs 2022;82:1527–38.
https://doi.org/10.1007/s40265-022-01797-x
|
| 44 |
Y Ki, W Kim, H Cho et al. The effect of probiotics for preventing radiation-induced morphological changes in intestinal mucosa of rats. J Korean Med Sci 2014;29:1372–8.
https://doi.org/10.3346/jkms.2014.29.10.1372
|
| 45 |
YS Kim, J Kim, SJ. Park High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 2015;33:1–7.
https://doi.org/10.1016/j.anaerobe.2015.01.004
|
| 46 |
JH Kim, K Kim, W. Kim Gut microbiota restoration through fecal microbiota transplantation: a new atopic dermatitis therapy. Exp Mol Med 2021;53:907–16.
https://doi.org/10.1038/s12276-021-00627-6
|
| 47 |
H Klammer, E Mladenov, F Li et al. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett 2015;356:58–71.
https://doi.org/10.1016/j.canlet.2013.12.017
|
| 48 |
EJ Koay, D Owen, P. Das Radiation-induced liver disease and modern radiotherapy. Semin Radiat Oncol 2018;28:321–31.
https://doi.org/10.1016/j.semradonc.2018.06.007
|
| 49 |
Y Kobashi, Y Shimazu, Y Sonoda et al. Maturing of public–private–people partnership (4P): lessons from 4P for triple disaster and subsequently COVID-19 pandemic in Fukushima. J Glob Health 2022;12:03028.
https://doi.org/10.7189/jogh.12.03028
|
| 50 |
MC Kordahi, B. Chassaing The intestinal microbiota: our best frenemy in radiation-induced damages? Cell Host Microbe 2021;29:7–9.
https://doi.org/10.1016/j.chom.2020.12.013
|
| 51 |
A Lapiere, M Geiger, V Robert et al. Prophylactic Faecalibacterium prausnitzii treatment prevents the acute breakdown of colonic epithelial barrier in a preclinical model of pelvic radiation disease. Gut Microbes 2020;12:1–15.
https://doi.org/10.1080/19490976.2020.1812867
|
| 52 |
YS Lee, TY Kim, Y Kim et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med 2021;53:1319–31.
https://doi.org/10.1038/s12276-021-00667-y
|
| 53 |
Y Li, J Dong, H Xiao et al. Gut commensal derived-valeric acid protects against radiation injuries. Gut Microbes 2020;11:789–806.
https://doi.org/10.1080/19490976.2019.1709387
|
| 54 |
X Li, J Chen, S Yuan et al. Activation of the P62-Keap1-NRF2 pathway protects against ferroptosis in radiation-induced lung injury. Oxid Med Cell Longev 2022;2022:8973509.
https://doi.org/10.1155/2022/8973509
|
| 55 |
YH Linn, KK Thu, NHH. Win Effect of probiotics for the prevention of acute radiation-induced diarrhoea among cervical cancer patients: a randomized Double-Blind Placebo-Controlled Study. Probiotics Antimicrob Proteins 2019;11:638–47.
https://doi.org/10.1007/s12602-018-9408-9
|
| 56 |
X Liu, Y Zhou, S Wang et al. Impact of low-dose ionising radiation on the composition of the gut microbiota of mice. Toxicol Sci 2019;171:258–68.
https://doi.org/10.1093/toxsci/kfz144
|
| 57 |
L Liu, C Chen, X Liu et al. Altered gut microbiota associated with hemorrhage in chronic radiation proctitis. Front Oncol 2021;11:637265.
https://doi.org/10.3389/fonc.2021.637265
|
| 58 |
G Liu, Q Yu, B Tan et al. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022a;14:2104089.
https://doi.org/10.1080/19490976.2022.2104089
|
| 59 |
Y Liu, M Yang, L Tang et al. TLR4 regulates RORgammat(+) regulatory T-cell responses and susceptibility to colon inflammation through interaction with Akkermansia muciniphila. Microbiome 2022b;10:98.
https://doi.org/10.1186/s40168-022-01296-x
|
| 60 |
G Lu, W Wang, P Li et al. Washed preparation of faecal microbiota changes the transplantation related safety, quantitative method and delivery. Microb Biotechnol 2022;15:2439–49.
https://doi.org/10.1111/1751-7915.14074
|
| 61 |
S Lucas, Y Omata, J Hofmann et al. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 2018;9:55.
https://doi.org/10.1038/s41467-017-02490-4
|
| 62 |
C Marcella, B Cui, CR Kelly et al. Systematic review: the global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment Pharmacol Ther 2021;53:33–42.
https://doi.org/10.1111/apt.16148
|
| 63 |
N Melin, T Yarahmadov, D Sanchez-Taltavull et al. A new mouse model of radiation-induced liver disease reveals mitochondrial dysfunction as an underlying fibrotic stimulus. JHEP Rep 2022;4:100508.
https://doi.org/10.1016/j.jhepr.2022.100508
|
| 64 |
IR Miousse, LE Ewing, CM Skinner et al. Methionine dietary supplementation potentiates ionizing radiation-induced gastrointestinal syndrome. Am J Physiol Gastrointest Liver Physiol 2020;318:G439–50.
https://doi.org/10.1152/ajpgi.00351.2019
|
| 65 |
JD Mitchell, DA Cehic, M Morgia et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the International Cardio-Oncology Society. JACC CardioOncol 2021;3:360–80.
https://doi.org/10.1016/j.jaccao.2021.06.003
|
| 66 |
SE Morgan, MB. Kastan p53 and ATM: cell cycle, cell death, and cancer. Adv Cancer Res 1997;71:1–25.
https://doi.org/10.1016/S0065-230X(08)60095-0
|
| 67 |
P Munoz-Schuffenegger, S Ng, LA. Dawson Radiation-induced liver toxicity. Semin Radiat Oncol 2017;27:350–7.
https://doi.org/10.1016/j.semradonc.2017.04.002
|
| 68 |
X Nie, L Li, M Yi et al. The intestinal microbiota plays as a protective regulator against radiation pneumonitis. Radiat Res 2020;194:52–60.
https://doi.org/10.1667/RR15579.1
|
| 69 |
Y Nishiyama, A Morita, S Tatsuta et al. Isorhamnetin promotes 53BP1 recruitment through the enhancement of ATM phosphorylation and protects mice from radiation gastrointestinal syndrome. Genes (Basel) 2021;12:1514.
https://doi.org/10.3390/genes12101514
|
| 70 |
N Oscarsson, L Ny, J Molne et al. Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radic Biol Med 2017;103:248–55.
https://doi.org/10.1016/j.freeradbiomed.2016.12.036
|
| 71 |
M Ramadan, HF Hetta, MM Saleh et al. Alterations in skin microbiome mediated by radiotherapy and their potential roles in the prognosis of radiotherapy-induced dermatitis: a pilot study. Sci Rep 2021;11:5179.
https://doi.org/10.1038/s41598-021-84529-7
|
| 72 |
C Reiff, D. Kelly Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Med Microbiol 2010;300:25–33.
https://doi.org/10.1016/j.ijmm.2009.08.004
|
| 73 |
M Reis Ferreira, HJN Andreyev, K Mohammed et al. Microbiotaand Radiotherapy-Induced Gastrointestinal Side-Effects (MARS) Study: a large pilot study of the microbiome in acute and late-radiation enteropathy. Clin Cancer Res 2019;25:6487–500.
https://doi.org/10.1158/1078-0432.CCR-19-0960
|
| 74 |
TE Riehl, D Alvarado, X Ee et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 2019;68:1003–13.
https://doi.org/10.1136/gutjnl-2018-316226
|
| 75 |
B Routy, E Le Chatelier, L Derosa et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91–7.
https://doi.org/10.1126/science.aan3706
|
| 76 |
M Russo, F Guida, L Paparo et al. The novel butyrate derivative phenylalanine-butyramide protects from doxorubicin- induced cardiotoxicity. Eur J Heart Fail 2019;21:519–28.
https://doi.org/10.1002/ejhf.1439
|
| 77 |
D Scartoni, I Desideri, I Giacomelli et al. Nutritional supplement based on zinc, prebiotics, probiotics and vitamins to prevent radiation-related gastrointestinal disorders. Anticancer Res 2015;35:5687–92.
|
| 78 |
TJ Schuijt, JM Lankelma, BP Scicluna et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016;65:575–83.
https://doi.org/10.1136/gutjnl-2015-309728
|
| 79 |
F Shao, FZ Xin, CG Yang et al. The impact of microbial immune enteral nutrition on the patients with acute radiation enteritis in bowel function and immune status. Cell Biochem Biophys 2014;69:357–61.
https://doi.org/10.1007/s12013-013-9807-1
|
| 80 |
H Shen, H Yu, PH Liang et al. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells. Blood 2012;119:3629–37.
https://doi.org/10.1182/blood-2011-08-373621
|
| 81 |
A Shibata, PA. Jeggo Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks. DNA Repair (Amst) 2020;93:102915.
https://doi.org/10.1016/j.dnarep.2020.102915
|
| 82 |
I Shuryak, VY Matrosova, EK Gaidamakova et al. Microbial cells can cooperate to resist high-level chronic ionizing radiation. PLoS One 2017;12:e0189261.
https://doi.org/10.1371/journal.pone.0189261
|
| 83 |
P Sittipo, HQ Pham, CE Park et al. Irradiation-induced intestinal damage is recovered by the indigenous gut bacteria lactobacillus acidophilus. Front Cell Infect Microbiol 2020;10:415.
https://doi.org/10.3389/fcimb.2020.00415
|
| 84 |
C Song, F Duan, T Ju et al. Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol 2022;5:680.
https://doi.org/10.1038/s42003-022-03602-7
|
| 85 |
JL Soriano, AC Calpena, EB Souto et al. Therapy for prevention and treatment of skin ionizing radiation damage: a review. Int J Radiat Biol 2019;95:537–53.
https://doi.org/10.1080/09553002.2019.1562254
|
| 86 |
BG Spyropoulos, EP Misiakos, C Fotiadis et al. Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Dig Dis Sci 2011;56:285–294.
https://doi.org/10.1007/s10620-010-1307-1
|
| 87 |
J Su, Q Zhao, Z Zheng et al. Prospective application of ferroptosis in hypoxic cells for tumor radiotherapy. Antioxidants (Basel) 2022;11:921.
https://doi.org/10.3390/antiox11050921
|
| 88 |
D Szczerbiec, J Piechocka, R Glowacki et al. Organic acids secreted by Lactobacillus spp. isolated from urine and their antimicrobial activity against uropathogenic Proteus mirabilis. Molecules 2022;27:5557.
https://doi.org/10.3390/molecules27175557
|
| 89 |
M Thomsen, L. Vitetta Adjunctive treatments for the prevention of chemotherapy- and radiotherapy-induced mucositis. Integr Cancer Ther 2018;17:1027–47.
https://doi.org/10.1177/1534735418794885
|
| 90 |
X Tian, F Wang, Y Luo et al. Protective role of nuclear factor- erythroid 2-related factor 2 against radiation-induced lung injury and inflammation. Front Oncol 2018;8:542.
https://doi.org/10.3389/fonc.2018.00542
|
| 91 |
T Tian, Y Zhao, Y Yang et al. The protective role of short-chain fatty acids acting as signal molecules in chemotherapy- or radiation-induced intestinal inflammation. Am J Cancer Res 2020;10:3508–31.
|
| 92 |
A Trompette, J Pernot, O Perdijk et al. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022;15:908–26.
https://doi.org/10.1038/s41385-022-00524-9
|
| 93 |
JF. Turrens Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335–44.
https://doi.org/10.1113/jphysiol.2003.049478
|
| 94 |
HP van der Laan, L Van den Bosch, E Schuit et al. Impact of radiation-induced toxicities on quality of life of patients treated for head and neck cancer. Radiother Oncol 2021;160:47–53.
https://doi.org/10.1016/j.radonc.2021.04.011
|
| 95 |
MC Vozenin, J Bourhis, M. Durante Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022;19:791–803.
https://doi.org/10.1038/s41571-022-00697-z
|
| 96 |
Y Wang, DH Wiesnoski, BA Helmink et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med 2018;24:1804–08.
https://doi.org/10.1038/s41591-018-0238-9
|
| 97 |
Z Wang, Q Wang, X Wang et al. Gut microbial dysbiosis is associated with development and progression of radiation enteritis during pelvic radiotherapy. J Cell Mol Med 2019;23:3747–56.
https://doi.org/10.1111/jcmm.14289
|
| 98 |
L Wang, L Tang, Y Feng et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 2020;69:1988–97.
https://doi.org/10.1136/gutjnl-2019-320105
|
| 99 |
X Wang, RB Undi, N Ali et al. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021;14:dmm048793.
https://doi.org/10.1242/dmm.048793
|
| 100 |
Y Wang, S Zhang, TJ Borody et al. Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases. Chin Med J (Engl) 2022;135:1927–39.
https://doi.org/10.1097/CM9.0000000000002339
|
| 101 |
B Wang, X Chen, Z Chen et al. Stable colonization of Akkermansia muciniphila educates host intestinal microecology and immunity to battle against inflammatory intestinal diseases. Exp Mol Med 2023a;55:55–68.
https://doi.org/10.1038/s12276-022-00911-z
|
| 102 |
W Wang, G Lu, X Wu et al. Colonic transendoscopic enteral tubing is a new pathway to microbial therapy, colonic drainage, and host-microbiota interaction research. J Clin Med 2023b;12:780.
https://doi.org/10.3390/jcm12030780
|
| 103 |
Z Wang, H Xiao, J Dong et al. Sexual dimorphism in gut microbiota dictates therapeutic efficacy of intravenous immunoglobulin on radiotherapy complications. J Adv Res 2023c;46:123–33.
https://doi.org/10.1016/j.jare.2022.06.002
|
| 104 |
J Weng, M Tu, P Wang et al. Amiodarone induces cell proliferation and myofibroblast differentiation via ERK1/2 and p38 MAPK signaling in fibroblasts. Biomed Pharmacother 2019;115:108889.
https://doi.org/10.1016/j.biopha.2019.108889
|
| 105 |
HW Xiao, M Cui, Y Li et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome 2020;8:69.
https://doi.org/10.1186/s40168-020-00845-6
|
| 106 |
H Xiao, Y Fan, Y Li et al. Oral microbiota transplantation fights against head and neck radiotherapy-induced oral mucositis in mice. Comput Struct Biotechnol J 2021;19:5898–910.
https://doi.org/10.1016/j.csbj.2021.10.028
|
| 107 |
L Xu, H Huang, T Liu et al. Exposure to X-rays causes depression- like behaviors in mice via HMGB1-mediated pyroptosis. Neuroscience 2022;481:99–110.
https://doi.org/10.1016/j.neuroscience.2021.11.023
|
| 108 |
JP Zackular, NT Baxter, KD Iverson et al. The gut microbiome modulates colon tumorigenesis. mBio 2013;4:e00692–00613.
https://doi.org/10.1128/mBio.00692-13
|
| 109 |
X Zeng, X Li, X Li et al. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood 2023;141:1691–707.
https://doi.org/10.1182/blood.2022017514
|
| 110 |
F Zhang, B Cui, X He et al.; FMT-standardization Study Group. Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 2018;9:462–73.
https://doi.org/10.1007/s13238-018-0541-8
|
| 111 |
T Zhang, G Lu, Z Zhao et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell 2020;11:251–66.
https://doi.org/10.1007/s13238-019-00684-8
|
| 112 |
Y Zhang, Y Dong, P Lu et al. Gut metabolite Urolithin A mitigates ionizing radiation-induced intestinal damage. J Cell Mol Med 2021;25:10306–12.
https://doi.org/10.1111/jcmm.16951
|
| 113 |
F Zhang, T Liu, HC Huang et al. Activation of pyroptosis and ferroptosis is involved in radiation-induced intestinal injury in mice. Biochem Biophys Res Commun 2022;631:102–9.
https://doi.org/10.1016/j.bbrc.2022.09.073
|
| 114 |
TS Zhao, LW Xie, S Cai et al. Dysbiosis of gut microbiota is associated with the progression of radiation-induced intestinal injury and is alleviated by oral compound probiotics in mouse model. Front Cell Infect Microbiol 2021;11:717636.
https://doi.org/10.3389/fcimb.2021.717636
|
| 115 |
YM Zheng, XX He, HH Xia et al. Multi-donor multi-course faecal microbiota transplantation relieves the symptoms of chronic hemorrhagic radiation proctitis: a case report. Medicine (Baltim) 2020;99:e22298.
https://doi.org/10.1097/MD.0000000000022298
|
| 116 |
L Zhou, M Zhang, Y Wang et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis 2018;24:1926–40.
https://doi.org/10.1093/ibd/izy182
|
| 117 |
XX Zhu, XJ Yang, YL Chao et al. The potential effect of oral microbiota in the prediction of mucositis during radiotherapy for nasopharyngeal carcinoma. EBioMedicine 2017;18:23–31.
https://doi.org/10.1016/j.ebiom.2017.02.002
|
| 118 |
F Zhang, W Wang, Y Nie, et al. From microbial technology to microbiota medicine as a clinical discpline: Sustainable development goal. Microb Biotechnol 2023; online ahead of print.
https://doi.org/10.1111/1751-7915.14317
|