Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

邮发代号 80-984

2019 Impact Factor: 10.164

Protein & Cell  2024, Vol. 15 Issue (7): 493-511   https://doi.org/10.1093/procel/pwad054
  本期目录
ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader
Chuanle Wang1,2, Yan Huang1(), Yue Yang1,3, Ruofei Li1, Yingying Li1, Hongxin Qiu1, Jiali Wu1, Guang Shi1, Wenbin Ma1, Zhou Songyang1,2()
1. MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangzhou Key Laboratory of Healthy Aging, School of Lifesciences, Sun Yat-sen University, Guangzhou 510275, China
2. Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
3. Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
 全文: PDF(14705 KB)  
Abstract

Telomeres are specialized structures at the ends of linear chromosomes that protect genome stability. The telomeric repeat-containing RNA (TERRA) that is transcribed from subtelomeric regions can invade into double-stranded DNA regions and form RNA:DNA hybrid-containing structure called R-loop. In tumor cells, R-loop formation is closely linked to gene expression and the alternative lengthening of telomeres (ALT) pathway. Dysregulated R-loops can cause stalled replication forks and telomere instability. However, how R-loops are recognized and regulated, particularly at telomeres, is not well understood. We discovered that ILF3 selectively associates with telomeric R-loops and safeguards telomeres from abnormal homologous recombination. Knocking out ILF3 results in excessive R-loops at telomeres and triggers telomeric DNA damage responses. In addition, ILF3 deficiency disrupts telomere homeostasis and causes abnormalities in the ALT pathway. Using the proximity-dependent biotin identification (BioID) technology, we mapped the ILF3 interactome and discovered that ILF3 could interact with several DNA/RNA helicases, including DHX9. Importantly, ILF3 may aid in the resolution of telomeric R-loops through its interaction with DHX9. Our findings suggest that ILF3 may function as a reader of telomeric R-loops, helping to prevent abnormal homologous recombination and maintain telomere homeostasis.

Key wordsILF3    RNA:DNA hybrids    telomeric R-loops    homologous recombination    telomeric DNA damage responses
收稿日期: 2023-04-19      出版日期: 2024-07-31
Corresponding Author(s): Yan Huang,Zhou Songyang   
 引用本文:   
. [J]. Protein & Cell, 2024, 15(7): 493-511.
Chuanle Wang, Yan Huang, Yue Yang, Ruofei Li, Yingying Li, Hongxin Qiu, Jiali Wu, Guang Shi, Wenbin Ma, Zhou Songyang. ILF3 safeguards telomeres from aberrant homologous recombination as a telomeric R-loop reader. Protein Cell, 2024, 15(7): 493-511.
 链接本文:  
https://academic.hep.com.cn/pac/CN/10.1093/procel/pwad054
https://academic.hep.com.cn/pac/CN/Y2024/V15/I7/493
1 D Argaud, MC Boulanger, A Chignon et al. Enhancer-mediated enrichment of interacting JMJD3-DDX21 to ENPP2 locus prevents R-loop formation and promotes transcription. Nucleic Acids Res 2019;47:8424–38.
https://doi.org/10.1093/nar/gkz560
2 R Arora, Y Lee, H Wischnewski et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun 2014;5:5220.
https://doi.org/10.1038/ncommS6220
3 CM Azzalin, P Reichenbach, L Khoriauli et al. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 2007;318:798–801.
https://doi.org/10.1126/science.1147182
4 A Bah, H Wischnewski, V Shchepachev et al. The telomeric transcriptome of Schizosaccharomyces pombe. Nucleic Acids Res 2012;40:2995–3005.
https://doi.org/10.1093/nar/gkr1153
5 EH Blackburn. Telomeres: no end in sight. Cell 1994;77:621–3.
https://doi.org/10.1016/0092-8674(94)90046-9
6 EH Blackburn. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 2005;579:859–62.
https://doi.org/10.1016/j.febslet.2004.11.036
7 SJ Boguslawski, DE Smith, MA Michalak et al. Characterization of monoclonal antibody to DNARNA and its application to immunodetection of hybrids. J Immunol Methods 1986;89:123–30.
https://doi.org/10.1016/0022-1759(86)90040-2
8 S Castella, R Bernard, M Corno et al. IlF3 and NF90 functions in RNA biology. Wiley Interdiscip Rev RNA 2015;6:243–56.
https://doi.org/10.1002/wrna.1270
9 AJ Cesare, Z Kaul, SB Cohen et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol 2009;16:1244–51.
https://doi.org/10.1038/nsmb.1725
10 Y-A Chen, Y-L Shen, H-Y Hsia et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol 2017;24:1124–31.
https://doi.org/10.1038/nsmb.3498
11 DH Cheung, ST Ho, KF Lau et al. Nucleophosmin interacts with PIN2/TERF1-interacting Telomerase Inhibitor 1 (PinX1) and Attenuates the PinX1 inhibition on telomerase activity. Sci Rep 2017;7:43650.
https://doi.org/10.1038/srep43650
12 NW Cho, RL Dilley, MA Lampson et al. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 2014;159:108–21.
https://doi.org/10.1016/j.cell.2014.08.030
13 HP Chu, C Cifuentes-Rojas, B Kesner et al. TERRA RNA antagonizes ATRX and protects telomeres. Cell 2017;170:86–101.e16.
https://doi.org/10.1016/j.cell.2017.06.017
14 S Cohen, N Puget, Y Lin et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun 2018;9:533.
https://doi.org/10.1038/S41467-018-02894-w
15 B Corthesy, PN Kao. Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J Biol Chem 1994;269:20682–90.
https://doi.org/10.1016/S0021-9258(17)32047-1
16 A Cristini, M Groh, MS Kristiansen et al. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep 2018;23:1891–905.
https://doi.org/10.1016/j.celrep.2018.04.025
17 A Cristini, G Ricci, S Britton et al. Dual processing of R-Loops and Topoisomerase I induces transcriptiondependent DNA double-strand breaks. Cell Rep 2019;28:3167–3181.e6.
https://doi.org/10.1016/j.celrep.2019.08.041
18 MP Crossley, C Song, MJ Bocek et al. R-loop-derived cytoplasmic RNA–DNA hybrids activate an immune response. Nature 2022;613:187–94.
https://doi.org/10.1038/S41586-022-05545-9
19 T de Lange. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–10.
https://doi.org/10.1101/gad.1346005
20 RL Dilley, P Verma, NW Cho et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 2016;539:54–8.
https://doi.org/10.1038/nature20099
21 M Feretzaki, J Lingner. A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods 2017;114:39–45.
https://doi.org/10.1016/j.ymeth.2016.08.004
22 M Feretzaki, M Pospisilova, R Valador Fernandes et al. RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature 2020;587:303–8.
https://doi.org/10.1038/S41586-020-2815-6
23 M Graf, D Bonetti, A Lockhart et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 2017;170:72–85.e14.
https://doi.org/10.1016/j.cell.2017.06.006
24 CW Greider, EH Blackburn. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 1989;337:331–7.
https://doi.org/10.1038/337331a0
25 CB Harley, AB Futcher, CW Greider. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458–60.
https://doi.org/10.1038/345458a0
26 JD Henson, JA Hannay, SW McCarthy et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin Cancer Res 2005;11:217–25.
https://doi.org/10.1158/1078-0432.217.11.1
27 JD Henson, Y Cao, LI Huschtscha et al. DNA C-circles are specific and quantifiable markers of alternativelengthening-of-telomeres activity. Nat Biotechnol 2009;27:1181–5.
https://doi.org/10.1038/nbt.1587
28 B Herdy, C Mayer, D Varshney et al. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res 2018;46:11592–604.
https://doi.org/10.1093/nar/gky861
29 M Hondele, R Sachdev, S Heinrich et al. DEAD-box ATPases are global regulators of phase-separated organelles. Nature 2019;573:144–8.
https://doi.org/10.1038/S41586-019-1502-y
30 X Jiao, BT Sherman, W Huang da et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012;28:1805–6.
https://doi.org/10.1093/bioinformatics/btS251
31 PN Kao, L Chen, G Brock et al. Cloning and expression of cyclosporin A-and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 1994;269:20691–9.
https://doi.org/10.1016/S0021-9258(17)32048-3
32 D Kappei, M Scheibe, M Paszkowski-Rogacz et al. Phylointeractomics reconstructs functional evolution of protein binding. Nat Commun 2017;8:14334.
https://doi.org/10.1038/ncommS14334
33 NW Kim, MA Piatyszek, KR Prowse et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011–5.
https://doi.org/10.1126/science.7605428
34 H Kim, F Li, Q He et al. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/CaS9 knockout cells. Cell Discov 2017;3:17034.
https://doi.org/10.1038/celldisc.2017.34
35 S Lago, E Tosoni, M Nadai et al. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim Biophys Acta Gen Subj 2017;1861:1371–81.
https://doi.org/10.1016/j.bbagen.2016.11.036
36 YW Lee, R Arora, H Wischnewski et al. TRF1 participates in chromosome end protection by averting TRF2-dependent telomeric R loops. Nat Struct Mol Biol 2018;25:147–53.
https://doi.org/10.1038/S41594-017-0021-5
37 D Lessel, C Schob, S Kury et al; DDD study. De Novo Missense Mutations in DHX30 impair global translation and cause a neurodevelopmental disorder. Am J Hum Genet 2017;101:716–24.
https://doi.org/10.1016/j.ajhg.2017.09.014
38 X Li, CX Liu, W Xue et al. Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 2017;67:214–227.e7.
https://doi.org/10.1016/j.molcel.2017.05.023
39 K Li, JL Wu, B Qin et al. ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer. Cell Res 2020a;30:163–78.
https://doi.org/10.1038/S41422-019-0257-1
40 Y Li, Y Song, W Xu et al. R-loops coordinate with SOX2 in regulating reprogramming to pluripotency. Sci Adv 2020b;6:eaba0777.
https://doi.org/10.1126/sciadv.aba0777
41 D Liu, MS O’Connor, J Qin et al. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 2004;279:51338–42.
https://doi.org/10.1074/jbc.M409293200
42 Y Liu, F Liu, Y Cao et al. Shwachman-Diamond Syndrome Protein SBDS maintains human telomeres by regulating telomerase recruitment. Cell Rep 2018;22:1849–60.
https://doi.org/10.1016/j.celrep.2018.01.057
43 S Liu, Y Hua, J Wang et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 2021;184:1314–1329 e10.
https://doi.org/10.1016/j.cell.2021.01.048
44 J Liu, ZX Liu, JJ Li et al. The Macrophage-Associated LncRNA MALR facilitates ILF3 liquid-liquid phase separation to promote HIF1α signaling in esophageal cancer. Cancer Res 2023;83:1476–89.
https://doi.org/10.1158/0008-5472.CAN-22-1922
45 JA Londono-Vallejo, H Der-Sarkissian, L Cazes et al. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res 2004;64:2324–7.
https://doi.org/10.1158/0008-5472.CAN-03-4035
46 J Ma, T Chen, S Wu et al. iProX: an integrated proteome resource. Nucleic Acids Res 2019;47:D1211–7.
https://doi.org/10.1093/nar/gky869
47 A Maicher, L Kastner, M Dees et al. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence. Nucleic Acids Res 2012;40:6649–59.
https://doi.org/10.1093/nar/gkS358
48 JJ Montero, I Lopez-Silanes, D Megias et al. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nat Commun 2018;9:1548.
https://doi.org/10.1038/S41467-018-03916-3
49 T Mosler, F Conte, GMC Longo et al. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun 2021;12:7314.
https://doi.org/10.1038/S41467-021-27530-y
50 R Nazitto, LM Amon, FD Mast et al. ILF3 is a negative transcriptional regulator of innate immune responses and myeloid dendritic cell maturation. J Immunol 2021;206:2949–65.
https://doi.org/10.4049/jimmunol.2001235
51 X Nie, D Xiao, Y Ge et al. TRF2 recruits nucleolar protein TCOF1 to coordinate telomere transcription and replication. Cell Death Differ 2020;28:1062–1075.
https://doi.org/10.1038/S41418-020-00637-3
52 J Ouyang, T Yadav, JM Zhang et al. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021;594:283–8.
https://doi.org/10.1038/S41586-021-03538-8
53 AM Parrott, MB Mathews. Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution. Nucleic Acids Res 2007;35:6249–58.
https://doi.org/10.1093/nar/gkm668
54 RC Patel, DJ Vestal, Z Xu et al. DRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem 1999;274:20432–7.
https://doi.org/10.1074/jbc.274.29.20432
55 E Petti, V Buemi, A Zappone et al. SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nat Commun 2019;10:1001.
https://doi.org/10.1038/S41467-019-08863-1
56 HA Pickett, RR Reddel. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol 2015;22:875–80.
https://doi.org/10.1038/nsmb.3106
57 L Prendergast, UL McClurg, R Hristova et al. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat Commun 2020;11:4534.
https://doi.org/10.1038/S41467-020-18306-x
58 KJ Roux, DI Kim, M Raida et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012;196:801–10.
https://doi.org/10.1083/jcb.201112098
59 D Roy, Z Zhang, Z Lu et al. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol 2010;30:146–59.
https://doi.org/10.1128/MCB.00897-09
60 I Salas-Armenteros, C Perez-Calero, A Bayona-Feliu et al. Human THO-SiN3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J 2017;36:3532–47.
https://doi.org/10.15252/embj.201797208
61 M Satoh, VM Shaheen, PN Kao et al. Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity. J Biol Chem 1999;274:34598–604.
https://doi.org/10.1074/jbc.274.49.34598
62 S Schoeftner, MA Blasco. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 2008;10:228–36.
https://doi.org/10.1038/ncb1685
63 B Schwanhausser, D Busse, N Li et al. Global quantification of mammalian gene expression control. Nature 2011;473:337–42.
https://doi.org/10.1038/nature10098
64 JW Shay, WE Wright. Telomeres and telomerase: three decades of progress. Nat Rev Genet 2019;20:299–309.
https://doi.org/10.1038/S41576-019-0099-1
65 G Shi, Y Hu, X Zhu et al. A critical role of telomere chromatin compaction in ALT tumor cell growth. Nucleic Acids Res 2020;48:6019–31.
https://doi.org/10.1093/nar/gkaa224
66 H Takai, A Smogorzewska, T de Lange. DNA damage foci at dysfunctional telomeres. Curr Biol 2003;13:1549–56.
https://doi.org/10.1016/S0960-9822(03)00542-6
67 J Tan, M Duan, T Yadav et al. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res 2020;48:1285–300.
https://doi.org/10.1093/nar/gkz1114
68 K Tominaga-Yamanaka, K Abdelmohsen, JL Martindale et al. NF90 coordinately represses the senescenceassociated secretory phenotype. Aging (Albany NY) 2012;4:695–708.
https://doi.org/10.18632/aging.100497
69 P Tran, T Pohl, C Chen et al. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat Commun 2017;8:15025.
https://doi.org/10.1038/ncommS15025
70 S Tyanova, T Temu, J Cox. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 2016;11:2301–19.
https://doi.org/10.1038/nprot.2016.136
71 J Vrbsky, S Akimcheva, JM Watson et al. siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genet 2010;6:e1000986.
https://doi.org/10.1371/journal.pgen.1000986
72 F Vumbaca, KN Phoenix, D Rodriguez-Pinto et al. Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol 2008;28:772–83.
https://doi.org/10.1128/MCB.02078-06
73 IX Wang, C Grunseich, J Fox et al. Human proteins that interact with RNA/DNA hybrids. Genome Res 2018;28:1405–14.
https://doi.org/10.1101/gr.237362.118
74 Z Xu, KD Duc, D Holcman et al. The length of the shortest telomere as the major determinant of the onset of replicative senescence. Genetics 2013;194:847–57.
https://doi.org/10.1534/genetics.113.152322
75 G Yan, J Yang, W Li et al. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat Cell Biol 2023;25:754–64.
https://doi.org/10.1038/S41556-023-01123-x
76 SF Yang, AA Sun, Y Shi et al. Structural and functional characterization of the RBBP4-ZNF827 interaction and its role in NuRD recruitment to telomeres. Biochem J 2018;475:2667–79.
https://doi.org/10.1042/BCJ20180310
77 T Yasuhara, R Kato, Y Hagiwara et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 2018;175:558–570.e11.
https://doi.org/10.1016/j.cell.2018.08.056
78 TR Yeager, AA Neumann, A Englezou et al. Telomerasenegative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 1999;59:4175–9.
79 TY Yu, YW Kao, JJ Lin. Telomeric transcripts stimulate telomere recombination to suppress senescence in cells lacking telomerase. Proc Natl Acad Sci U S A 2014;111:3377–82.
https://doi.org/10.1073/pnas.1307415111
80 W Yuan, Q Al-Hadid, Z Wang et al. TDRD3 promotes DHX9 chromatin recruitment and R-loop resolution. Nucleic Acids Res 2021;49:8573–91.
https://doi.org/10.1093/nar/gkab642
81 C Zhang, L Chen, D Peng et al. METTL3 and N6-methyladenosine promote homologous recombinationmediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell 2020;79:425–442.e7.
https://doi.org/10.1016/j.molcel.2020.06.017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed