|
|
|
Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data |
Ming Hu1, Ke Deng1,2, Zhaohui Qin3, Jun S. Liu1( ) |
1. Department of Statistics, Harvard University, Cambridge, MA 02138, USA 2. Mathematical Sciences Center, Tsinghua University, Beijing 100084, China 3. Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA |
|
|
Abstract: Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. |
收稿日期: 2013-03-06
出版日期: 2013-06-05
|
Corresponding Author(s):
Jun S. Liu
|
1 |
N. Naumova, and J. Dekker, (2010) Integrating one-dimensional and three-dimensional maps of genomes. J. Cell. Sci., 123, 1979−1988.
pmid: 20519580
|
2 |
C. L. Woodcock, and R. P. Ghosh, (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol, 2, a000596.
pmid: 20452954
|
3 |
T. Misteli, (2004) Spatial positioning; a new dimension in genome function. Cell, 119, 153−156.
pmid: 15479633
|
4 |
J. Dekker, (2008) Gene regulation in the third dimension. Science, 319, 1793−1794.
pmid: 18369139
|
5 |
A. Miele, and J. Dekker, (2008) Long-range chromosomal interactions and gene regulation. Mol Biosyst, 4, 1046−1057.
pmid: 18931780
|
6 |
P. Fraser, and W. Bickmore, (2007) Nuclear organization of the genome and the potential for gene regulation. Nature, 447, 413−417.
pmid: 17522674
|
7 |
T. Misteli, (2007) Beyond the sequence: cellular organization of genome function. Cell, 128, 787−800.
pmid: 17320514
|
8 |
F. W. Alt,, Y. Zhang,, F. L. Meng,, C. Guo, and B. Schwer, (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell, 152, 417−429.
pmid: 23374339
|
9 |
F. Mitelman, (2000) Recurrent chromosome aberrations in cancer. Mutat. Res., 462, 247−253.
pmid: 10767636
|
10 |
J. D. Rowley, (1998) The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet., 32, 495−519.
pmid: 9928489
|
11 |
B. van Steensel, and J. Dekker, (2010) Genomics tools for unraveling chromosome architecture. Nat. Biotechnol., 28, 1089−1095.
pmid: 20944601
|
12 |
T. Cremer,, et al. (2012) Chromosome Territory Organization within the Nucleus. Encyclopedia of Molecular Cell Biology and Molecular Medicine.
|
13 |
T. Cremer,, M. Cremer,, S. Dietzel,, S. Müller,, I. Solovei, and S. Fakan, (2006) Chromosome territories—a functional nuclear landscape. Curr. Opin. Cell Biol., 18, 307−316.
pmid: 16687245
|
14 |
M. R. Branco, and A. Pombo, (2007) Chromosome organization: new facts, new models. Trends Cell Biol., 17, 127−134.
pmid: 17197184
|
15 |
W. W. Wasserman, and A. Sandelin, (2004) Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet., 5, 276−287.
pmid: 15131651
|
16 |
N. Gilbert,, S. Boyle,, H. Fiegler,, K. Woodfine,, N. P. Carter, and W. A. Bickmore, (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell, 118, 555−566.
pmid: 15339661
|
17 |
E. de Wit, and W. de Laat, (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev., 26, 11−24.
pmid: 22215806
|
18 |
J. Dekker,, M. A. Marti-Renom, and L. A. Mirny, (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390−403.
pmid: 23657480
|
19 |
J. Dekker,, K. Rippe,, M. Dekker, and N. Kleckner, (2002) Capturing chromosome conformation. Science, 295, 1306−1311.
pmid: 11847345
|
20 |
M. Simonis,, P. Klous,, E. Splinter,, Y. Moshkin,, R. Willemsen,, E. de Wit,, B. van Steensel, and W. de Laat, (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet., 38, 1348−1354.
pmid: 17033623
|
21 |
Z. Zhao,, G. Tavoosidana,, M. Sjölinder,, A. Göndör,, P. Mariano,, S. Wang,, C. Kanduri,, M. Lezcano,, K. S. Sandhu,, U. Singh,, et al. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet., 38, 1341−1347.
pmid: 17033624
|
22 |
J. Dostie,, T. A. Richmond,, R. A. Arnaout,, R. R. Selzer,, W. L. Lee,, T. A. Honan,, E. D. Rubio,, A. Krumm,, J. Lamb,, C. Nusbaum,, et al. (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299−1309.
pmid: 16954542
|
23 |
J. Dostie, and J. Dekker, (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc, 2, 988−1002.
pmid: 17446898
|
24 |
M. Simonis,, J. Kooren, and W. de Laat, (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods, 4, 895−901.
pmid: 17971780
|
25 |
M. J. Fullwood, and Y. Ruan, (2009) ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem., 107, 30−39.
pmid: 19247990
|
26 |
L. Handoko,, H. Xu,, G. Li,, C. Y. Ngan,, E. Chew,, M. Schnapp,, C. W. Lee,, C. Ye,, J. L. Ping,, F. Mulawadi,, et al. (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet., 43, 630−638.
pmid: 21685913
|
27 |
C. A. Espinoza, and B. Ren, (2011) Mapping higher order structure of chromatin domains. Nat. Genet., 43, 615−616.
pmid: 21709679
|
28 |
M. J. Fullwood,, M. H. Liu,, Y. F. Pan,, J. Liu,, H. Xu,, Y. B. Mohamed,, Y. L. Orlov,, S. Velkov,, A. Ho,, P. H. Mei,, et al. (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58−64.
pmid: 19890323
|
29 |
N. Rusk, (2009) When ChIA PETs meet Hi-C. Nat. Methods, 6, 863.
|
30 |
A. Miele,, K. Bystricky, and J. Dekker, (2009) Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions. PLoS Genet., 5, e1000478.
pmid: 19424429
|
31 |
B. Tolhuis,, R. J. Palstra,, E. Splinter,, F. Grosveld, and W. de Laat, (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell, 10, 1453−1465.
pmid: 12504019
|
32 |
B. R. Lajoie,, N. L. van Berkum,, A. Sanyal, and J. Dekker, (2009) My5C: web tools for chromosome conformation capture studies. Nat. Methods, 6, 690−691.
pmid: 19789528
|
33 |
D. Baù, A. Sanyal,, B. R. Lajoie,, E. Capriotti,, M. Byron,, J. B. Lawrence,, J. Dekker, and M. A. Marti-Renom, (2011) The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol., 18, 107−114.
pmid: 21131981
|
34 |
E. Lieberman-Aiden,, N. L. van Berkum,, L. Williams,, M. Imakaev,, T. Ragoczy,, A. Telling,, I. Amit,, B. R. Lajoie,, P. J. Sabo,, M. O. Dorschner,, et al. (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289−293.
pmid: 19815776
|
35 |
N.L. van Berkum,, et al. (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp., 39.
|
36 |
M. Baker, (2011) Genomics: Genomes in three dimensions. Nature, 470, 289−294.
pmid: 21307943
|
37 |
R. Kalhor,, H. Tjong,, N. Jayathilaka,, F. Alber, and L. Chen, (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol., 30, 90−98 .
pmid: 22198700
|
38 |
Z. Duan,, M. Andronescu,, K. Schutz,, S. McIlwain,, Y. J. Kim,, C. Lee,, J. Shendure,, S. Fields,, C. A. Blau, and W. S. Noble, (2010) A three-dimensional model of the yeast genome. Nature, 465, 363−367.
pmid: 20436457
|
39 |
M. Rousseau,, J. Fraser,, M. A. Ferraiuolo,, J. Dostie, and M. Blanchette, (2011) Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 12, 414.
pmid: 22026390
|
40 |
H. Tanizawa,, O. Iwasaki,, A. Tanaka,, J. R. Capizzi,, P. Wickramasinghe,, M. Lee,, Z. Fu, and K. Noma, (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res., 38, 8164−8177.
pmid: 21030438
|
41 |
M. A. Marti-Renom, and L. A. Mirny, (2011) Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput. Biol., 7, e1002125.
pmid: 21779160
|
42 |
J. Mateos-Langerak,, M. Bohn,, W. de Leeuw,, O. Giromus,, E. M. Manders,, P. J. Verschure,, M. H. Indemans,, H. J. Gierman,, D. W. Heermann,, R. van Driel,, et al. (2009) Spatially confined folding of chromatin in the interphase nucleus. Proc. Natl. Acad. Sci. U.S.A., 106, 3812−3817.
pmid: 19234129
|
43 |
M. Bohn, and D. W. Heermann, (2010) Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE, 5, e12218.
pmid: 20811620
|
44 |
M. Barbieri,, M. Chotalia,, J. Fraser,, L. M. Lavitas,, J. Dostie,, A. Pombo, and M. Nicodemi, (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. U.S.A., 109, 16173−16178.
pmid: 22988072
|
45 |
J. R. Dixon,, S. Selvaraj,, F. Yue,, A. Kim,, Y. Li,, Y. Shen,, M. Hu,, J. S. Liu, and B. Ren, (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376−380.
pmid: 22495300
|
46 |
E. P. Nora,, B. R. Lajoie,, E. G. Schulz,, L. Giorgetti,, I. Okamoto,, N. Servant,, T. Piolot,, N. L. van Berkum,, J. Meisig,, J. Sedat,, et al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485, 381−385.
pmid: 22495304
|
47 |
T. Sexton,, E. Yaffe,, E. Kenigsberg,, F. Bantignies,, B. Leblanc,, M. Hoichman,, H. Parrinello,, A. Tanay, and G. Cavalli, (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458−472.
pmid: 22265598
|
48 |
C. Hou,, L. Li,, Z. S. Qin, and V. G. Corces, (2012) Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell, 48, 471−484.
pmid: 23041285
|
49 |
Z. Duan, and C. A. Blau, (2012) The genome in space and time: does form always follow function? How does the spatial and temporal organization of a eukaryotic genome reflect and influence its functions? Bioessays, 34, 800−810.
pmid: 22777837
|
50 |
X. Lan,, P. J. Farnham, and V. X. Jin, (2012) Uncovering transcription factor modules using one- and three-dimensional analyses. J. Biol. Chem., 287, 30914−30921.
pmid: 22952238
|
51 |
X. Lan,, H. Witt,, K. Katsumura,, Z. Ye,, Q. Wang,, E. H. Bresnick,, P. J. Farnham, and V. X. Jin, (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690−7704.
pmid: 22675074
|
52 |
E. E. Khrameeva,, A. A. Mironov,, G. G. Fedonin,, P. Khaitovich, and M. S. Gelfand, (2012) Spatial proximity and similarity of the epigenetic state of genome domains. PLoS ONE, 7, e33947.
pmid: 22496774
|
53 |
Y. C. Hwang,, Q. Zheng,, B. D. Gregory, and L. S. Wang, (2013) High-throughput identification of long-range regulatory elements and their target promoters in the human genome. Nucleic Acids Res., 41, 4835−4846.
pmid: 23525463
|
54 |
J. Wang,, X. Lan,, P. Y. Hsu,, H. K. Hsu,, K. Huang,, J. Parvin,, T. H. Huang, and V. X. Jin, (2013) Genome-wide analysis uncovers high frequency, strong differential chromosomal interactions and their associated epigenetic patterns in E2-mediated gene regulation. BMC Genomics, 14, 70.
pmid: 23368971
|
55 |
A. Baker,, B. Audit,, C. L. Chen,, B. Moindrot,, A. Leleu,, G. Guilbaud,, A. Rappailles,, C. Vaillant,, A. Goldar,, F. Mongelard,, et al. (2012) Replication fork polarity gradients revealed by megabase-sized U-shaped replication timing domains in human cell lines. PLoS Comput. Biol., 8, e1002443.
pmid: 22496629
|
56 |
B. Moindrot,, B. Audit,, P. Klous,, A. Baker,, C. Thermes,, W. de Laat,, P. Bouvet,, F. Mongelard, and A. Arneodo, (2012) 3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Res., 40, 9470−9481.
pmid: 22879376
|
57 |
S. Takebayashi,, V. Dileep,, T. Ryba,, J. H. Dennis, and D. M. Gilbert, (2012) Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc. Natl. Acad. Sci. U.S.A., 109, 12574−12579.
pmid: 22807480
|
58 |
G. Fudenberg,, G. Getz,, M. Meyerson, and L. A. Mirny, (2011) High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol., 29, 1109−1113.
pmid: 22101486
|
59 |
S. De, and F. Michor, (2011) DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol., 29, 1103−1108.
pmid: 22101487
|
60 |
R. Chiarle,, Y. Zhang,, R. L. Frock,, S. M. Lewis,, B. Molinie,, Y. J. Ho,, D. R. Myers,, V. W. Choi,, M. Compagno,, D. J. Malkin,, et al. (2011) Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell, 147, 107−119.
pmid: 21962511
|
61 |
Y. Zhang,, R. P. McCord,, Y. J. Ho,, B. R. Lajoie,, D. G. Hildebrand,, A. C. Simon,, M. S. Becker,, F. W. Alt, and J. Dekker, (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 148, 908−921.
pmid: 22341456
|
62 |
O. Elemento,, M. A. Rubin, and D. S. Rickman, (2012) Oncogenic transcription factors as master regulators of chromatin topology: a new role for ERG in prostate cancer. Cell Cycle, 11, 3380−3383.
pmid: 22918253
|
63 |
D. S. Rickman,, T. D. Soong,, B. Moss,, J. M. Mosquera,, J. Dlabal,, S. Terry,, T. Y. MacDonald,, J. Tripodi,, K. Bunting,, V. Najfeld,, et al. (2012) Oncogene-mediated alterations in chromatin conformation. Proc. Natl. Acad. Sci. U.S.A., 109, 9083−9088.
pmid: 22615383
|
64 |
J. M. Engreitz,, V. Agarwala, and L. A. Mirny, (2012) Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS ONE, 7, e44196.
pmid: 23028501
|
65 |
M. Shugay,, I. Ortiz de Mendíbil,, J. L. Vizmanos, and F. J. Novo, (2012) Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer. PLoS Comput. Biol., 8, e1002797.
pmid: 23236267
|
66 |
Z. Wang,, R. Cao,, K. Taylor,, A. Briley,, C. Caldwell, and J. Cheng, (2013) The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types. PLoS ONE, 8, e58793.
pmid: 23536826
|
67 |
E. V. Chambers,, W. A. Bickmore, and C. A. Semple, (2013) Divergence of Mammalian higher order chromatin structure is associated with developmental Loci. PLoS Comput. Biol., 9, e1003017.
pmid: 23592965
|
68 |
Z. Dai, and X. Dai, (2012) Nuclear colocalization of transcription factor target genes strengthens coregulation in yeast. Nucleic Acids Res., 40, 27−36.
pmid: 21880591
|
69 |
D. M. Witten, and W. S. Noble, (2012) On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements. Nucleic Acids Res., 40, 3849−3855.
pmid: 22266657
|
70 |
J. Paulsen,, T. G. Lien,, G. K. Sandve,, L. Holden,, O. Borgan,, I. K. Glad, and E. Hovig, (2013) Handling realistic assumptions in hypothesis testing of 3D co-localization of genomic elements. Nucleic Acids Res., (In press).
pmid: 23571755
|
71 |
J. M. Belton,, R. P. McCord,, J. H. Gibcus,, N. Naumova,, Y. Zhan, and J. Dekker, (2012) Hi-C: a comprehensive technique to capture the conformation of genomes. Methods, 58, 268−276.
pmid: 22652625
|
72 |
Z. Duan,, M. Andronescu,, K. Schutz,, C. Lee,, J. Shendure,, S. Fields,, W. S. Noble, and C. Anthony Blau, (2012) A genome-wide 3C-method for characterizing the three-dimensional architectures of genomes. Methods, 58, 277−288.
pmid: 22776363
|
73 |
E. Yaffe, and A. Tanay, (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059−1065.
pmid: 22001755
|
74 |
M. Imakaev,, G. Fudenberg,, R. P. McCord,, N. Naumova,, A. Goloborodko,, B. R. Lajoie,, J. Dekker, and L. A. Mirny, (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods, 9, 999−1003.
pmid: 22941365
|
75 |
H. Li, and R. Durbin, (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754−1760.
pmid: 19451168
|
76 |
H. Li,, J. Ruan, and R. Durbin, (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851−1858.
pmid: 18714091
|
77 |
B. Langmead,, C. Trapnell,, M. Pop, and S. L. Salzberg, (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.
pmid: 19261174
|
78 |
Tools: Novocraft.
|
79 |
Picard is avaible in the website of Github.
|
80 |
N. Servant,, B. R. Lajoie,, E. P. Nora,, L. Giorgetti,, C. J. Chen,, E. Heard,, J. Dekker, and E. Barillot, (2012) HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics, 28, 2843−2844.
pmid: 22923296
|
81 |
Y. Shavit, and P. Lio’, (2013) CytoHiC: a cytoscape plugin for visual comparison of Hi-C networks. Bioinformatics, 29, 1206−1207.
pmid: 23508968
|
82 |
X. Zhou,, R. F. Lowdon,, D. Li,, H. A. Lawson,, P. A. Madden,, J. F. Costello, and T. Wang, (2013) Exploring long-range genome interactions using the WashU Epigenome Browser. Nat. Methods, 10, 375−376.
pmid: 23629413
|
83 |
D. Aird,, M. G. Ross,, W. S. Chen,, M. Danielsson,, T. Fennell,, C. Russ,, D. B. Jaffe,, C. Nusbaum, and A. Gnirke, (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol., 12, R18.
pmid: 21338519
|
84 |
Y. Benjamini, and T. P. Speed, (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res., 40, e72.
pmid: 22323520
|
85 |
D. K. Gascoigne,, et al. (2011) Reassessment of the Hi-C analysis of human genome architecture.
|
86 |
A. Cournac,, H. Marie-Nelly,, M. Marbouty,, R. Koszul, and J. Mozziconacci, (2012) Normalization of a chromosomal contact map. BMC Genomics, 13, 436.
pmid: 22935139
|
87 |
M. Hu,, K. Deng,, S. Selvaraj,, Z. Qin,, B. Ren, and J. S. Liu, (2012) HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28, 3131−3133.
pmid: 23023982
|
88 |
W. A. Bickmore, and B. van Steensel, (2013) Genome architecture: domain organization of interphase chromosomes. Cell, 152, 1270−1284.
pmid: 23498936
|
89 |
A. Smallwood, and B. Ren, (2013) Genome organization and long-range regulation of gene expression by enhancers. Curr. Opin. Cell Biol., 25, 1−8.
pmid: 23352256
|
90 |
J. H. Gibcus, and J. Dekker, (2013) The hierarchy of the 3D genome. Mol. Cell, 49, 773−782.
pmid: 23473598
|
91 |
A. Tanay, and G. Cavalli, (2013) Chromosomal domains: epigenetic contexts and functional implications of genomic compartmentalization. Curr. Opin. Genet. Dev., 23, 1−7.
pmid: 23523342
|
92 |
G. Cavalli, and T. Misteli, (2013) Functional implications of genome topology. Nat. Struct. Mol. Biol., 20, 290−299.
pmid: 23463314
|
93 |
L. Liu,, Y. Zhang,, J. Feng,, N. Zheng,, J. Yin, and Y. Zhang, (2012) GeSICA: genome segmentation from intra-chromosomal associations. BMC Genomics, 13, 164.
pmid: 22559164
|
94 |
G. Fudenberg, and L. A. Mirny, (2012) Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev., 22, 115−124.
pmid: 22360992
|
95 |
S. M. Gasser, (2002) Visualizing chromatin dynamics in interphase nuclei. Science, 296, 1412−1416.
pmid: 12029120
|
96 |
C. Lanctôt,, T. Cheutin,, M. Cremer,, G. Cavalli, and T. Cremer, (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet., 8, 104−115.
pmid: 17230197
|
97 |
D. Gerlich,, J. Beaudouin,, B. Kalbfuss,, N. Daigle,, R. Eils, and J. Ellenberg, (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell, 112, 751−764.
pmid: 12654243
|
98 |
A. Y. Grosberg,, S. K. Nechaev, and E. I. Shakhnovich, (1988) The role of topological constraints in the kinetics of collapse of macromolecules. J. Phys., 49, 2095−2100.
|
99 |
A. Y. Grosberg,, et al. (1993) Crumpled globule model of the three-dimensional structure of DNA. Europhys. Lett., 23, 373.
|
100 |
C. Munkel, and J. Langowski, (1998) Chromosome structure predicted by a polymer model. Physcial Review E, 57, 5888−5896.
|
101 |
L. A. Mirny, (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res., 19, 37−51.
pmid: 21274616
|
102 |
D. Baù and M. A. Marti-Renom, (2011) Structure determination of genomic domains by satisfaction of spatial restraints. Chromosome Res., 19, 25−35.
pmid: 21190133
|
103 |
M. Hu,, K. Deng,, Z. Qin,, J. Dixon,, S. Selvaraj,, J. Fang,, B. Ren, and J. S. Liu, (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893.
pmid: 23382666
|
104 |
J. S. Liu,, R. Chen, and W. H. Wong, (1998) Rejection control and sequential importance sampling. J. Am. Stat. Assoc., 93, 1022−1031.
|
105 |
J. Liu, (2001) Monte Carlo Strategies in scientific computing. New York: Springer-Verlag.
|
106 |
S. Duane,, et al. (1987) Hybrid Monte-Carlo. Phys. Lett. B, 195, 216−222.
|
107 |
T. Misteli, (2012) Parallel genome universes. Nat. Biotechnol., 30, 55−56.
pmid: 22231096
|
108 |
H. Akaike, (1974) A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716−723.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|