Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2013, Vol. 1 Issue (3): 209-220   https://doi.org/10.1007/s40484-013-0020-4
  RESEARCH ARTICLE 本期目录
Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli
Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli
Haoqian Zhang1,2,3, Ying Sheng1, Qianzhu Wu1, Ao Liu1, Yuheng Lu1, Zhenzhen Yin1, Yuansheng Cao3,4, Weiqian Zeng3,4, Qi Ouyang3,4()
1. Peking University Team for the International Genetic Engineering Machine Competition (iGEM), Peking University, Beijng 100871, China; 2. Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; 3. Center for Quantitative Biology, Peking University, Beijng 100871, China; 4. State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
 全文: PDF(399 KB)   HTML
Abstract

A central goal of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to construct basic biological functional modules, and through rational design, to build synthetic biological systems with predetermined functions. Here, we apply the reverse engineering design principle of biological networks to synthesize a gene circuit that executes semi-log dose-response, a logarithmically linear sensing function, in Escherichia coli cells. We first mathematically define the object function semi-log dose-response, and then search for tri-node network topologies that can most robustly execute the object function. The simplest topology, transcriptional coherent feed-forward loop (TCFL), among the searching results is mathematically analyzed; we find that, in TCFL topology, the semi-log dose-response function arises from the additive effect of logarithmical linearity intervals of Hill functions. TCFL is then genetically implemented in E. coli as a logarithmically linear sensing biosensor for heavy metal ions [mercury (II)]. Functional characterization shows that this rationally designed biosensor circuit works as expected. Through this study we demonstrated the potential application of biological network reverse engineering to broaden the computational power of synthetic biology.

Key wordssynthetic biology    gene circuit design    reverse engineering    logarithmically linear sensing
收稿日期: 2013-09-20      出版日期: 2013-09-05
Corresponding Author(s): Ouyang Qi,Email:qi@pku.edu.cn   
 引用本文:   
. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli[J]. Quantitative Biology, 2013, 1(3): 209-220.
Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli. Quant. Biol., 2013, 1(3): 209-220.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-013-0020-4
https://academic.hep.com.cn/qb/CN/Y2013/V1/I3/209
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Gardner,T. S., Cantor,C. R. and Collins,J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature , 403, 339-342
pmid:10659857.
2 Elowitz,M. B. and Leibler,S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature , 403, 335-338
pmid:10659856.
3 Danino,T., Mondragón-Palomino,O., Tsimring,L. and Hasty,J. (2010) A synchronized quorum of genetic clocks. Nature , 463, 326-330
pmid:20090747.
4 Lou,C., Liu,X., Ni,M., Huang,Y., Huang,Q., Huang,L., Jiang,L., Lu,D., Wang,M., Liu,C., (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol. , 6, 350
pmid:20212522.
5 Tabor,J. J., Salis,H. M., Simpson,Z. B., Chevalier,A. A., Levskaya,A., Marcotte,E. M., Voigt,C. A. and Ellington,A. D. (2009) A synthetic genetic edge detection program. Cell , 137, 1272-1281
pmid:19563759.
6 Kwok,R. (2010) Five hard truths for synthetic biology. Nature , 463, 288-290
pmid:20090726.
7 Lu,T. K., Khalil,A. S. and Collins,J. J. (2009) Next-generation synthetic gene networks. Nat. Biotechnol. , 27, 1139-1150
pmid:20010597.
8 Nandagopal,N. and Elowitz,M. B. (2011) Synthetic biology: integrated gene circuits. Science , 333, 1244-1248
pmid:21885772.
9 Randall,A., Guye,P., Gupta,S., Duportet, X. and Weiss, R. (2011) Design and connection of robust genetic circuits. Meth. Enzymol. , 497, 159-186
pmid:21601086.
10 Bruggeman, F.J., Hornberg, J.J., Boogerd, F.C., and Westerhoff, H.V. (2007). Introduction to systems biology. EXS97 , 1-19 .
11 Smolke, C. D. and Silver, P. A. (2011) Informing biological design by integration of systems and synthetic biology. Cell , 144, 855-859
pmid:21414477.
12 Alon, U. (2007). An introduction to systems biology : design principles of biological circuits (Boca Raton, FL, Chapman & Hall/CRC).
13 Ma, W., Trusina, A., El-Samad, H., Lim, W. A. and Tang, C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell , 138, 760-773
pmid:19703401.
14 Artyukhin, A. B., Wu, L. F. and Altschuler, S. J. (2009) Only two ways to achieve perfection. Cell , 138, 619-621
pmid:19703388.
15 Buchler, N. E., Gerland, U. and Hwa, T. (2005) Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U.S.A. , 102, 9559-9564
pmid:15972813.
16 Helmann, J. D., Ballard, B. T. and Walsh, C. T. (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science , 247, 946-948
pmid:2305262.
17 Ralston,D. M. and O’Halloran, T. V. (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. U.S.A. , 87, 3846-3850
pmid:2187194.
18 Wickner, S., Maurizi, M. R. and Gottesman, S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science , 286, 1888-1893
pmid:10583944.
19 J., Xiao, J., Ren, X., Lao, K., and Xie, X.S. (2006). Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600-1603 .
20 Hobman, J. L., Wilkie, J. and Brown, N. L. (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals , 18, 429-436
pmid:16158235.
21 Nascimento, A. M. and Chartone-Souza, E. (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. , 2, 92-101
pmid:12917805.
22 Liebert, C. A., Hall, R. M. and Summers, A. O. (1999) Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. , 63, 507-522
pmid:10477306.
23 Nakaya, R., Nakamura, A. and Murata, Y. (1960) Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun. , 3, 654-659
pmid:13727669.
24 Bower, A. G., McClintock, M. K. and Fong, S. S. (2010) Synthetic biology: a foundation for multi-scale molecular biology. Bioeng Bugs , 1, 309-312
pmid:21326830.
25 Canton, B., Labno, A. and Endy, D. (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. , 26, 787-793
pmid:18612302.
26 Christie, G. E. and Calendar, R. (1985) Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J. Mol. Biol. , 181, 373-382
pmid:3981640.
27 Julien, B. and Calendar, R. (1996) Bacteriophage PSP3 and phiR73 activator proteins: analysis of promoter specificities. J. Bacteriol. , 178, 5668-5675
pmid:8824611.
28 Park, S. J., Wireman,J. and Summers, A. O. (1992) Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol. , 174, 2160-2171
pmid:1312997.
29 Daniel, R., Rubens, J. R., Sarpeshkar, R. and Lu, T. K. (2013) Synthetic analog computation in living cells. Nature , 497, 619-623
pmid:23676681.
30 Chau, A. H., Walte, rJ. M., Gerardin, J., Tang, C. and Lim, W. A. (2012) Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell , 151, 320-332
pmid:23039994.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed