|
|
|
Target specificity of the CRISPR-Cas9 system |
Xuebing Wu1,2,Andrea J. Kriz3,Phillip A. Sharp1,3,*( ) |
1. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
|
|
Abstract: The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system. |
Key words:
CRISPR
Cas9
target specificity
off-targets
genome engineering
|
收稿日期: 2014-06-30
出版日期: 2014-12-04
|
Corresponding Author(s):
Phillip A. Sharp
|
1 |
Marraffini, L. A. and Sontheimer, E. J. (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190
https://doi.org/10.1038/nrg2749
pmid: 20125085
|
2 |
Barrangou, R. and Marraffini, L. A. (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 54, 234–244
https://doi.org/10.1016/j.molcel.2014.03.011
pmid: 24766887
|
3 |
Deveau, H., Garneau, J. E. and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 64, 475–493
https://doi.org/10.1146/annurev.micro.112408.134123
pmid: 20528693
|
4 |
Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167–170
https://doi.org/10.1126/science.1179555
pmid: 20056882
|
5 |
Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. and Brouns, S. J. J. (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 34, 401–407
https://doi.org/10.1016/j.tibs.2009.05.002
pmid: 19646880
|
6 |
Terns, M. P. and Terns, R. M. (2011) CRISPR-based adaptive immune systems. Curr. Opin. Microbiol., 14, 321–327
https://doi.org/10.1016/j.mib.2011.03.005
pmid: 21531607
|
7 |
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821
https://doi.org/10.1126/science.1225829
pmid: 22745249
|
8 |
Mali, P., Esvelt, K. M. and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology. Nat. Methods, 10, 957–963
https://doi.org/10.1038/nmeth.2649
pmid: 24076990
|
9 |
Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355
https://doi.org/10.1038/nbt.2842
pmid: 24584096
|
10 |
Zhang, F., Wen, Y. and Guo, X. (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet., doi: 10.1093/hmg/ddu125
pmid: 24651067
|
11 |
Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
pmid: 24906146
|
12 |
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
https://doi.org/10.1126/science.1231143
pmid: 23287718
|
13 |
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
https://doi.org/10.1126/science.1232033
pmid: 23287722
|
14 |
Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L. and Jaenisch, R. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154, 1370–1379
https://doi.org/10.1016/j.cell.2013.08.022.
pmid: 23992847
|
15 |
Jao, L.E., Wente, S. R. and Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA, 110, 13904–13909
https://doi.org/10.1073/pnas.1308335110
pmid: 23918387
|
16 |
Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., doi: 10.1074/ibc.M114.564625
pmid: 24907273
|
17 |
Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 41, e141
https://doi.org/10.1093/nar/gkt464
pmid: 23748566
|
18 |
Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C. and Rodriguez-Perales, S. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 5, 3964
https://doi.org/10.1038/ncomms4964
pmid: 24888982
|
19 |
Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. and Del Bene, F. (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res., 24, 142–153
https://doi.org/10.1101/gr.161638.113
pmid: 24179142
|
20 |
Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C. and Schmid, B. (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987
https://doi.org/10.1242/dev.099085
pmid: 24257628
|
21 |
Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C. K., (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658
https://doi.org/10.1016/j.stem.2013.11.002
pmid: 24315439
|
22 |
Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D. and Li, J. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13, 659–662
https://doi.org/10.1016/j.stem.2013.10.016
pmid: 24315440
|
23 |
Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T. and Anderson, D. G. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32, 551–553
https://doi.org/10.1038/nbt.2884
pmid: 24681508
|
24 |
Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S. and Qi, L. S. (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc., 8, 2180–2196
https://doi.org/10.1038/nprot.2013.132
pmid: 24136345
|
25 |
Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451
https://doi.org/10.1016/j.cell.2013.06.044
pmid: 23849981
|
26 |
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
https://doi.org/10.1016/j.cell.2013.02.022
pmid: 23452860
|
27 |
Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., Shivalila, C. S., Dadon, D. B. and Jaenisch, R. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res., 23, 1163–1171
https://doi.org/10.1038/cr.2013.122
pmid: 23979020
|
28 |
Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A. and Maehr, R. (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223
https://doi.org/10.1242/dev.103341.
pmid: 24346702
|
29 |
Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
https://doi.org/10.1038/nbt.2675
pmid: 23907171
|
30 |
Farzadfard, F., Perli, S. D. and Lu, T. K. (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol., 2, 604–613
pmid: 23977949.
|
31 |
Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479–1491
https://doi.org/10.1016/j.cell.2013.12.001
pmid: 24360272
|
32 |
Qiu, P., Shandilya, H., D’Alessio, J. M., O’Connor, K., Durocher, J. and Gerard, G. F. (2004) Mutation detection using Surveyor nuclease. Biotechniques, 36, 702–707
pmid: 15088388.
|
33 |
Mashal, R. D., Koontz, J. and Sklar, J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet., 9, 177–183
https://doi.org/10.1038/ng0295-177
pmid: 7719346
|
34 |
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 31, 827–832
https://doi.org/10.1038/nbt.2647
pmid: 23873081
|
35 |
Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826
https://doi.org/10.1038/nbt.2623
pmid: 23792628
|
36 |
Carroll, D. (2013) Staying on target with CRISPR-Cas. Nat. Biotechnol., 31, 807–809
https://doi.org/10.1038/nbt.2684
|
37 |
Wu, X., Scott, D. A., Kriz, A. J., Chiu, A. C., Hsu, P. D., Dadon, D. B., Cheng, A. W., Trevino, A. E., Konermann, S., Chen, S., (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 32, 670–676
pmid: 24752079.
|
38 |
Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843
https://doi.org/10.1038/nbt.2673
pmid: 23934178
|
39 |
Guilinger, J. P., Pattanayak, V., Reyon, D., Tsai, S. Q., Sander, J. D., Joung, J. K. and Liu, D. R. (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods, 11, 429–435
https://doi.org/10.1038/nmeth.2845
pmid: 24531420
|
40 |
Pattanayak, V., Ramirez, C. L., Joung, J. K. and Liu, D. R. (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods, 8, 765–770
https://doi.org/10.1038/nmeth.1670
pmid: 21822273
|
41 |
Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C. C., Wang, J., Friedman, G., (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 29, 816–823
https://doi.org/10.1038/nbt.1948
pmid: 21822255
|
42 |
Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., (2013) In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res., 41, e181
https://doi.org/10.1093/nar/gkt716.
pmid: 23945932
|
43 |
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141
https://doi.org/10.1101/gr.162339.113
pmid: 24253446
|
44 |
Kuscu, C., Arslan, S., Singh, R., Thorpe, J. and Adli, M. (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol., 32, 677–683
pmid: 24837660.
|
45 |
O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. (2014) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005413
|
46 |
Chailleux, C., Aymard, F., Caron, P., Daburon, V., Courilleau, C., Canitrot, Y., Legube, G. and Trouche, D. (2014) Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat. Protoc., 9, 517–528
https://doi.org/10.1038/nprot.2014.031
pmid: 24504477
|
47 |
Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods, 10, 361–365
https://doi.org/10.1038/nmeth.2408
pmid: 23503052
|
48 |
Chiu, H., Schwartz, H. T., Antoshechkin, I. and Sternberg, P. W. (2013) Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics, 195, 1167–1171
https://doi.org/10.1534/genetics.113.155879
pmid: 23979577
|
49 |
Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA, 111, 4632–4637
https://doi.org/10.1073/pnas.1400822111
pmid: 24550464
|
50 |
Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J., doi: 10.1111/pbi.12200
pmid: 24854982
|
51 |
Veres, A., Gosis, B. S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Talkowski, M. E. and Musunuru, K. (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 15, 27–30
https://doi.org/10.1016/j.stem.2014.04.020
pmid: 24996167
|
52 |
Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R. A., Zhang, K., Cheng, L., (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15, 12–13
https://doi.org/10.1016/j.stem.2014.06.011
pmid: 24996165
|
53 |
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
https://doi.org/10.1038/nrg2641
pmid: 19736561
|
54 |
Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607
https://doi.org/10.1073/pnas.1316064110
pmid: 24173036
|
55 |
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976
https://doi.org/10.1038/nmeth.2600
pmid: 23892895
|
56 |
Nishimasu, H., Ran, F. A. A., Hsu, P. D. D., Konermann, S., Shehata, S. I. I., Dohmae, N., Ishitani, R., Zhang, F. and Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949
https://doi.org/10.1016/j.cell.2014.02.001
pmid: 24529477
|
57 |
Garneau, J. E., Dupuis, M.-è., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H. and Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71
https://doi.org/10.1038/nature09523
|
58 |
Zhang, Y., Heidrich, N., Ampattu, B. J., Gunderson, C. W., Seifert, H. S., Schoen, C., Vogel, J. and Sontheimer, E. J. (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell, 50, 488–503
https://doi.org/10.1016/j.molcel.2013.05.001
pmid: 23706818
|
59 |
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67
https://doi.org/10.1038/nature13011
pmid: 24476820
|
60 |
Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389
https://doi.org/10.1016/j.cell.2013.08.021
pmid: 23992846
|
61 |
Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J. and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res., 42, 7473–7485
pmid: 24838573.
|
62 |
Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31, 233–239
https://doi.org/10.1038/nbt.2508
pmid: 23360965
|
63 |
Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284
https://doi.org/10.1038/nbt.2808
pmid: 24463574
|
64 |
Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell, 54, 698–710
https://doi.org/10.1016/j.molcel.2014.04.022
pmid: 24837679
|
65 |
Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., Li, Y. and Weiss, R. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods, 11, 723–726
pmid: 24797424.
|
66 |
Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019
https://doi.org/10.1101/gr.171322.113
pmid: 24696461
|
67 |
Ramakrishna, S., Kwaku Dad, A.-B., Beloor, J., Gopalappa, R., Lee, S.-K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027
https://doi.org/10.1101/gr.171264.113
pmid: 24696462
|
68 |
Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA, 95, 10570–10575
https://doi.org/10.1073/pnas.95.18.10570
pmid: 9724744
|
69 |
Guilinger, J. P., Thompson, D. B. and Liu, D. R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 32, 577–582
https://doi.org/10.1038/nbt.2909
|
70 |
Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J. and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol., 32, 569–576
https://doi.org/10.1038/nbt.2908
pmid: 24770325
|
71 |
Ma M, Ye AY, Zheng W, Kong L. (201 3)A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res. Int. 2013, 270805
|
72 |
Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123
https://doi.org/10.1038/nmeth.2812
pmid: 24481216
|
73 |
Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G. (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
https://doi.org/10.1093/bioinformatics/btt764
|
74 |
Bae, S., Park, J. and Kim, J.-S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475
https://doi.org/10.1093/bioinformatics/btu048
pmid: 24463181
|
75 |
Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. and Valen, E. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res., 42, W401–407
pmid: 24861617
|
76 |
Gratz, S. J., Ukken, F. P., Rubinstein, C. D., Thiede, G., Donohue, L. K., Cummings, A. M. and O’Connor-Giles, K. M. (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 196, 961–971
https://doi.org/10.1534/genetics.113.160713
pmid: 24478335
|
77 |
Aach J, Mali P, Church GM. (2014) CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005074
|
78 |
Xie, S., Shen, B., Zhang, C., Huang, X. and Zhang, Y. (2014) sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448
https://doi.org/10.1371/journal.pone.0100448
pmid: 24956386
|
79 |
Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F. and Dobbs, D. (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res., 35, W599-605
https://doi.org/10.1093/nar/gkm349
pmid: 17526515
|
80 |
Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K. and Dobbs, D. (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res., 38, W462-468
https://doi.org/10.1093/nar/gkq319
pmid: 20435679
|
81 |
Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, 467–477
https://doi.org/10.1038/nrmicro2577.
|
82 |
Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84
https://doi.org/10.1126/science.1246981
pmid: 24336569
|
83 |
Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J. and Church, G. M. (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 10, 1116–1121
https://doi.org/10.1038/nmeth.2681
pmid: 24076762
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|