Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2014, Vol. 2 Issue (2): 59-70   https://doi.org/10.1007/s40484-014-0030-x
  REVIEW 本期目录
Target specificity of the CRISPR-Cas9 system
Xuebing Wu1,2,Andrea J. Kriz3,Phillip A. Sharp1,3,*()
1. David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
 全文: PDF(523 KB)   HTML
Abstract

The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system.

Key wordsCRISPR    Cas9    target specificity    off-targets    genome engineering
收稿日期: 2014-06-30      出版日期: 2014-12-04
Corresponding Author(s): Phillip A. Sharp   
 引用本文:   
. [J]. Quantitative Biology, 2014, 2(2): 59-70.
Xuebing Wu, Andrea J. Kriz, Phillip A. Sharp. Target specificity of the CRISPR-Cas9 system. Quant. Biol., 2014, 2(2): 59-70.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-014-0030-x
https://academic.hep.com.cn/qb/CN/Y2014/V2/I2/59
Fig.1  
Fig.2  
1 Marraffini, L. A. and Sontheimer, E. J. (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190
https://doi.org/10.1038/nrg2749 pmid: 20125085
2 Barrangou, R. and Marraffini, L. A. (2014) CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell, 54, 234–244
https://doi.org/10.1016/j.molcel.2014.03.011 pmid: 24766887
3 Deveau, H., Garneau, J. E. and Moineau, S. (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol., 64, 475–493
https://doi.org/10.1146/annurev.micro.112408.134123 pmid: 20528693
4 Horvath, P. and Barrangou, R. (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science, 327, 167–170
https://doi.org/10.1126/science.1179555 pmid: 20056882
5 Van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. and Brouns, S. J. J. (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 34, 401–407
https://doi.org/10.1016/j.tibs.2009.05.002 pmid: 19646880
6 Terns, M. P. and Terns, R. M. (2011) CRISPR-based adaptive immune systems. Curr. Opin. Microbiol., 14, 321–327
https://doi.org/10.1016/j.mib.2011.03.005 pmid: 21531607
7 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. and Charpentier, E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
8 Mali, P., Esvelt, K. M. and Church, G. M. (2013) Cas9 as a versatile tool for engineering biology. Nat. Methods, 10, 957–963
https://doi.org/10.1038/nmeth.2649 pmid: 24076990
9 Sander, J. D. and Joung, J. K. (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347–355
https://doi.org/10.1038/nbt.2842 pmid: 24584096
10 Zhang, F., Wen, Y. and Guo, X. (2014) CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet., doi: 10.1093/hmg/ddu125
pmid: 24651067
11 Hsu, P. D., Lander, E. S. and Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278
https://doi.org/10.1016/j.cell.2014.05.010 pmid: 24906146
12 Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
13 Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E. and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826
https://doi.org/10.1126/science.1232033 pmid: 23287722
14 Yang, H., Wang, H., Shivalila, C. S., Cheng, A. W., Shi, L. and Jaenisch, R. (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154, 1370–1379
https://doi.org/10.1016/j.cell.2013.08.022. pmid: 23992847
15 Jao, L.E., Wente, S. R. and Chen, W. (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA, 110, 13904–13909
https://doi.org/10.1073/pnas.1308335110 pmid: 23918387
16 Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H. and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by CRISPR/Cas9 in mammalian cells. J. Biol. Chem., doi: 10.1074/ibc.M114.564625
pmid: 24907273
17 Xiao, A., Wang, Z., Hu, Y., Wu, Y., Luo, Z., Yang, Z., Zu, Y., Li, W., Huang, P., Tong, X., (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res., 41, e141
https://doi.org/10.1093/nar/gkt464 pmid: 23748566
18 Torres, R., Martin, M. C., Garcia, A., Cigudosa, J. C., Ramirez, J. C. and Rodriguez-Perales, S. (2014) Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system. Nat. Commun., 5, 3964
https://doi.org/10.1038/ncomms4964 pmid: 24888982
19 Auer, T. O., Duroure, K., De Cian, A., Concordet, J.-P. and Del Bene, F. (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res., 24, 142–153
https://doi.org/10.1101/gr.161638.113 pmid: 24179142
20 Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C. and Schmid, B. (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development, 140, 4982–4987
https://doi.org/10.1242/dev.099085 pmid: 24257628
21 Schwank, G., Koo, B.-K., Sasselli, V., Dekkers, J. F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C. K., (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658
https://doi.org/10.1016/j.stem.2013.11.002 pmid: 24315439
22 Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D. and Li, J. (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 13, 659–662
https://doi.org/10.1016/j.stem.2013.10.016 pmid: 24315440
23 Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P. A., Jacks, T. and Anderson, D. G. (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol., 32, 551–553
https://doi.org/10.1038/nbt.2884 pmid: 24681508
24 Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S. and Qi, L. S. (2013) CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc., 8, 2180–2196
https://doi.org/10.1038/nprot.2013.132 pmid: 24136345
25 Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., Stern-Ginossar, N., Brandman, O., Whitehead, E. H., Doudna, J. A., (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451
https://doi.org/10.1016/j.cell.2013.06.044 pmid: 23849981
26 Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
https://doi.org/10.1016/j.cell.2013.02.022 pmid: 23452860
27 Cheng, A. W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T. W., Rangarajan, S., Shivalila, C. S., Dadon, D. B. and Jaenisch, R. (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res., 23, 1163–1171
https://doi.org/10.1038/cr.2013.122 pmid: 23979020
28 Kearns, N. A., Genga, R. M. J., Enuameh, M. S., Garber, M., Wolfe, S. A. and Maehr, R. (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development, 141, 219–223
https://doi.org/10.1242/dev.103341. pmid: 24346702
29 Mali, P., Aach, J., Stranges, P. B., Esvelt, K. M., Moosburner, M., Kosuri, S., Yang, L. and Church, G. M. (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol., 31, 833–838
https://doi.org/10.1038/nbt.2675 pmid: 23907171
30 Farzadfard, F., Perli, S. D. and Lu, T. K. (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol., 2, 604–613
pmid: 23977949.
31 Chen, B., Gilbert, L. A., Cimini, B. A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E. H., Weissman, J. S., Qi, L. S., (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155, 1479–1491
https://doi.org/10.1016/j.cell.2013.12.001 pmid: 24360272
32 Qiu, P., Shandilya, H., D’Alessio, J. M., O’Connor, K., Durocher, J. and Gerard, G. F. (2004) Mutation detection using Surveyor nuclease. Biotechniques, 36, 702–707
pmid: 15088388.
33 Mashal, R. D., Koontz, J. and Sklar, J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet., 9, 177–183
https://doi.org/10.1038/ng0295-177 pmid: 7719346
34 Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., Li, Y., Fine, E. J., Wu, X., Shalem, O., (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 31, 827–832
https://doi.org/10.1038/nbt.2647 pmid: 23873081
35 Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K. and Sander, J. D. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol., 31, 822–826
https://doi.org/10.1038/nbt.2623 pmid: 23792628
36 Carroll, D. (2013) Staying on target with CRISPR-Cas. Nat. Biotechnol., 31, 807–809
https://doi.org/10.1038/nbt.2684
37 Wu, X., Scott, D. A., Kriz, A. J., Chiu, A. C., Hsu, P. D., Dadon, D. B., Cheng, A. W., Trevino, A. E., Konermann, S., Chen, S., (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol., 32, 670–676
pmid: 24752079.
38 Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A. and Liu, D. R. (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol., 31, 839–843
https://doi.org/10.1038/nbt.2673 pmid: 23934178
39 Guilinger, J. P., Pattanayak, V., Reyon, D., Tsai, S. Q., Sander, J. D., Joung, J. K. and Liu, D. R. (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat. Methods, 11, 429–435
https://doi.org/10.1038/nmeth.2845 pmid: 24531420
40 Pattanayak, V., Ramirez, C. L., Joung, J. K. and Liu, D. R. (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods, 8, 765–770
https://doi.org/10.1038/nmeth.1670 pmid: 21822273
41 Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C. C., Wang, J., Friedman, G., (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol., 29, 816–823
https://doi.org/10.1038/nbt.1948 pmid: 21822255
42 Sander, J. D., Ramirez, C. L., Linder, S. J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J. A., Reyon, D., Bernstein, B. E., Liu, D. R., (2013) In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res., 41, e181
https://doi.org/10.1093/nar/gkt716. pmid: 23945932
43 Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S. and Kim, J. S. (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res., 24, 132–141
https://doi.org/10.1101/gr.162339.113 pmid: 24253446
44 Kuscu, C., Arslan, S., Singh, R., Thorpe, J. and Adli, M. (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol., 32, 677–683
pmid: 24837660.
45 O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. (2014) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005413
46 Chailleux, C., Aymard, F., Caron, P., Daburon, V., Courilleau, C., Canitrot, Y., Legube, G. and Trouche, D. (2014) Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat. Protoc., 9, 517–528
https://doi.org/10.1038/nprot.2014.031 pmid: 24504477
47 Crosetto, N., Mitra, A., Silva, M. J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., (2013) Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods, 10, 361–365
https://doi.org/10.1038/nmeth.2408 pmid: 23503052
48 Chiu, H., Schwartz, H. T., Antoshechkin, I. and Sternberg, P. W. (2013) Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics, 195, 1167–1171
https://doi.org/10.1534/genetics.113.155879 pmid: 23979577
49 Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D.-L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc. Natl. Acad. Sci. USA, 111, 4632–4637
https://doi.org/10.1073/pnas.1400822111 pmid: 24550464
50 Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J., doi: 10.1111/pbi.12200
pmid: 24854982
51 Veres, A., Gosis, B. S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Talkowski, M. E. and Musunuru, K. (2014) Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell, 15, 27–30
https://doi.org/10.1016/j.stem.2014.04.020 pmid: 24996167
52 Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R. A., Zhang, K., Cheng, L., (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell, 15, 12–13
https://doi.org/10.1016/j.stem.2014.06.011 pmid: 24996165
53 Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
https://doi.org/10.1038/nrg2641 pmid: 19736561
54 Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607
https://doi.org/10.1073/pnas.1316064110 pmid: 24173036
55 Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976
https://doi.org/10.1038/nmeth.2600 pmid: 23892895
56 Nishimasu, H., Ran, F. A. A., Hsu, P. D. D., Konermann, S., Shehata, S. I. I., Dohmae, N., Ishitani, R., Zhang, F. and Nureki, O. (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949
https://doi.org/10.1016/j.cell.2014.02.001 pmid: 24529477
57 Garneau, J. E., Dupuis, M.-è., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H. and Moineau, S. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71
https://doi.org/10.1038/nature09523
58 Zhang, Y., Heidrich, N., Ampattu, B. J., Gunderson, C. W., Seifert, H. S., Schoen, C., Vogel, J. and Sontheimer, E. J. (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell, 50, 488–503
https://doi.org/10.1016/j.molcel.2013.05.001 pmid: 23706818
59 Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 507, 62–67
https://doi.org/10.1038/nature13011 pmid: 24476820
60 Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., Scott, D. A., Inoue, A., Matoba, S., Zhang, Y., (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389
https://doi.org/10.1016/j.cell.2013.08.021 pmid: 23992846
61 Lin, Y., Cradick, T. J., Brown, M. T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B. M., Vertino, P. M., Stewart, F. J. and Bao, G. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res., 42, 7473–7485
pmid: 24838573.
62 Jiang, W., Bikard, D., Cox, D., Zhang, F. and Marraffini, L. A. (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol., 31, 233–239
https://doi.org/10.1038/nbt.2508 pmid: 23360965
63 Fu, Y., Sander, J. D., Reyon, D., Cascio, V. M. and Joung, J. K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol., 32, 279–284
https://doi.org/10.1038/nbt.2808 pmid: 24463574
64 Nissim, L., Perli, S. D., Fridkin, A., Perez-Pinera, P. and Lu, T. K. (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell, 54, 698–710
https://doi.org/10.1016/j.molcel.2014.04.022 pmid: 24837679
65 Kiani, S., Beal, J., Ebrahimkhani, M. R., Huh, J., Hall, R. N., Xie, Z., Li, Y. and Weiss, R. (2014) CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods, 11, 723–726
pmid: 24797424.
66 Kim, S., Kim, D., Cho, S. W., Kim, J. and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res., 24, 1012–1019
https://doi.org/10.1101/gr.171322.113 pmid: 24696461
67 Ramakrishna, S., Kwaku Dad, A.-B., Beloor, J., Gopalappa, R., Lee, S.-K. and Kim, H. (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res., 24, 1020–1027
https://doi.org/10.1101/gr.171264.113 pmid: 24696462
68 Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA, 95, 10570–10575
https://doi.org/10.1073/pnas.95.18.10570 pmid: 9724744
69 Guilinger, J. P., Thompson, D. B. and Liu, D. R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 32, 577–582
https://doi.org/10.1038/nbt.2909
70 Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J. and Joung, J. K. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol., 32, 569–576
https://doi.org/10.1038/nbt.2908 pmid: 24770325
71 Ma M, Ye AY, Zheng W, Kong L. (201 3)A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res. Int. 2013, 270805
72 Heigwer, F., Kerr, G. and Boutros, M. (2014) E-CRISP: fast CRISPR target site identification. Nat. Methods, 11, 122–123
https://doi.org/10.1038/nmeth.2812 pmid: 24481216
73 Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G. (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics
https://doi.org/10.1093/bioinformatics/btt764
74 Bae, S., Park, J. and Kim, J.-S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475
https://doi.org/10.1093/bioinformatics/btu048 pmid: 24463181
75 Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. and Valen, E. (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res., 42, W401–407
pmid: 24861617
76 Gratz, S. J., Ukken, F. P., Rubinstein, C. D., Thiede, G., Donohue, L. K., Cummings, A. M. and O’Connor-Giles, K. M. (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics, 196, 961–971
https://doi.org/10.1534/genetics.113.160713 pmid: 24478335
77 Aach J, Mali P, Church GM. (2014) CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. BioRxiv, Cold Spring Harbor Labs, doi: http://dx.doi.org/10.1101/005074
78 Xie, S., Shen, B., Zhang, C., Huang, X. and Zhang, Y. (2014) sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448
https://doi.org/10.1371/journal.pone.0100448 pmid: 24956386
79 Sander, J. D., Zaback, P., Joung, J. K., Voytas, D. F. and Dobbs, D. (2007) Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res., 35, W599-605
https://doi.org/10.1093/nar/gkm349 pmid: 17526515
80 Sander, J. D., Maeder, M. L., Reyon, D., Voytas, D. F., Joung, J. K. and Dobbs, D. (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res., 38, W462-468
https://doi.org/10.1093/nar/gkq319 pmid: 20435679
81 Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J. J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F. J. M., Wolf, Y. I., Yakunin, A. F., (2011) Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol., 9, 467–477
https://doi.org/10.1038/nrmicro2577.
82 Wang, T., Wei, J. J., Sabatini, D. M. and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343, 80–84
https://doi.org/10.1126/science.1246981 pmid: 24336569
83 Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J. and Church, G. M. (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods, 10, 1116–1121
https://doi.org/10.1038/nmeth.2681 pmid: 24076762
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed