|
|
|
OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites |
Honglei Liu, Yanda Li, Xiaowo Wang( ) |
MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing100084, China |
|
|
Abstract: Constraint-based flux analysis has been widely used in metabolic engineering to predict genetic optimization strategies. These methods seek to find genetic manipulations that maximally couple the desired metabolites with the cellular growth objective. However, such framework does not work well for overproducing chemicals that are not closely correlated with biomass, for example non-native biochemical production by introducing synthetic pathways into heterologous host cells. Here, we present a computational method called OP-Synthetic, which can identify effective manipulations (upregulation, downregulation and deletion of reactions) and produce a step-by-step optimization strategy for the overproduction of indigenous and non-native chemicals. We compared OP-Synthetic with several state-of-the-art computational approaches on the problems of succinate overproduction and N-acetylneuraminic acid synthetic pathway optimization in Escherichia coli. OP-Synthetic showed its advantage for efficiently handling multiple steps optimization problems on genome wide metabolic networks. And more importantly, the optimization strategies predicted by OP-Synthetic have a better match with existing engineered strains, especially for the engineering of synthetic metabolic pathways for non-native chemical production. OP-Synthetic is freely available at:http://bioinfo.au.tsinghua.edu.cn/member/xwwang/OPSynthetic/. |
Key words:
metabolic network
flux analysis
optimization
|
收稿日期: 2014-09-12
出版日期: 2015-01-14
|
Corresponding Author(s):
Xiaowo Wang
|
1 |
J. W. Lee,, D. Na,, J. M. Park,, J. Lee,, S. Choi, and S. Y. Lee, (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol., 8, 536–546
https://doi.org/10.1038/nchembio.970
pmid: 22596205
|
2 |
K. L. J. Prather, and C. H. Martin, (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin.Biotechnol.,19, 468–474
https://doi.org/10.1016/j.copbio.2008.07.009
pmid: 18725289
|
3 |
H. Alper,, K. Miyaoku, and G. Stephanopoulos, (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol., 23, 612–616
https://doi.org/10.1038/nbt1083
pmid: 15821729
|
4 |
J. H. Park,, K. H. Lee,, T. Y. Kim, and S. Y. Lee, (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA, 104, 7797–7802
https://doi.org/10.1073/pnas.0702609104
pmid: 17463081
|
5 |
D.-K. Ro,, E. M. Paradise,, M. Ouellet,, K. J. Fisher,, K. L. Newman,, J. M. Ndungu,, K. A. Ho,, R. A. Eachus,, T. S. Ham,, J. Kirby,, et al. (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943
https://doi.org/10.1038/nature04640
pmid: 16612385
|
6 |
J. Kang,, P. Gu,, Y. Wang,, Y. Li,, F. Yang,, Q. Wang, and Q. Qi, (2012) Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab. Eng., 14, 623–629
https://doi.org/10.1016/j.ymben.2012.09.002
pmid: 23018051
|
7 |
E. J. Steen,, Y. Kang,, G. Bokinsky,, Z. Hu,, A. Schirmer,, A. McClure,, S. B. Del Cardayre, and J. D. Keasling, (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463, 559–562
https://doi.org/10.1038/nature08721
pmid: 20111002
|
8 |
J. W. Lee,, T. Y. Kim,, Y.-S. Jang,, S. Choi, and S. Y. Lee, (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol., 29, 370–378
https://doi.org/10.1016/j.tibtech.2011.04.001
pmid: 21561673
|
9 |
J. M. Park,, T. Y. Kim, and S. Y. Lee, (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv., 27, 979–988
https://doi.org/10.1016/j.biotechadv.2009.05.019
pmid: 19464354
|
10 |
S. J. Cox,, S. Shalel Levanon,, A. Sanchez,, H. Lin,, B. Peercy,, G. N. Bennett, and K.-Y. San, (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab. Eng., 8, 46–57
https://doi.org/10.1016/j.ymben.2005.09.006
pmid: 16263313
|
11 |
H. Lin,, G. N. Bennett, and K.-Y. San, (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng., 7, 116–127
https://doi.org/10.1016/j.ymben.2004.10.003
pmid: 15781420
|
12 |
K. H. Lee,, J. H. Park,, T. Y. Kim,, H. U. Kim, and S. Y. Lee, (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol., 3, 149
https://doi.org/10.1038/msb4100196
pmid: 18059444
|
13 |
H. Alper,, Y.-S. Jin,, J. F. Moxley, and G. Stephanopoulos, (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng., 7, 155–164
https://doi.org/10.1016/j.ymben.2004.12.003
pmid: 15885614
|
14 |
C. Bro,, B. Regenberg,, J. Förster, and J. Nielsen, (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng., 8, 102–111
https://doi.org/10.1016/j.ymben.2005.09.007
pmid: 16289778
|
15 |
K. J. Kauffman,, P. Prakash, and J. S. Edwards, (2003) Advances in flux balance analysis. Curr. Opin.Biotechnol.,14, 491–496
https://doi.org/10.1016/j.copbio.2003.08.001
pmid: 14580578
|
16 |
J. D. Orth,, I. Thiele, and B. Ø. Palsson, (2010) What is flux balance analysis? Nat. Biotechnol., 28, 245–248
https://doi.org/10.1038/nbt.1614
pmid: 20212490
|
17 |
R. Mahadevan, and C. H. Schilling, (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng., 5, 264–276
https://doi.org/10.1016/j.ymben.2003.09.002
pmid: 14642354
|
18 |
D. Segrè,, D. Vitkup, and G. M. Church, (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA, 99, 15112–15117
https://doi.org/10.1073/pnas.232349399
pmid: 12415116
|
19 |
N. D. Price,, J. L. Reed, and B. O. Palsson, (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol., 2, 886–897
https://doi.org/10.1038/nrmicro1023
pmid: 15494745
|
20 |
J. Kim, and J. L. Reed, (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol., 4, 53
https://doi.org/10.1186/1752-0509-4-53
pmid: 20426856
|
21 |
L. Yang,, W. R. Cluett, and R. Mahadevan, (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng., 13, 272–281
https://doi.org/10.1016/j.ymben.2011.03.002
pmid: 21414417
|
22 |
A. P. Burgard,, P. Pharkya, and C. D. Maranas, (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84, 647–657
https://doi.org/10.1002/bit.10803
pmid: 14595777
|
23 |
P. Pharkya, and C. D. Maranas, (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13
https://doi.org/10.1016/j.ymben.2005.08.003
pmid: 16199194
|
24 |
P. Pharkya,, A. P. Burgard, and C. D. Maranas, (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res., 14, 2367–2376
https://doi.org/10.1101/gr.2872004
pmid: 15520298
|
25 |
G. Rockwell,, N. J. Guido,, and G. M. Church, (2013) Redirector: designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol., 9, e1002882
https://doi.org/10.1371/journal.pcbi.1002882
pmid: 23341769
|
26 |
H. S. Choi,, S. Y. Lee,, T. Y. Kim, and H. M. Woo, (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76, 3097–3105
https://doi.org/10.1128/AEM.00115-10
pmid: 20348305
|
27 |
J. M. Park,, H. M. Park,, W. J. Kim,, H. U. Kim,, T. Y. Kim, and S. Y. Lee, (2012) Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 106
https://doi.org/10.1186/1752-0509-6-106
pmid: 22909053
|
28 |
S. Ranganathan,, P. F. Suthers, and C. D. Maranas, (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, e1000744
https://doi.org/10.1371/journal.pcbi.1000744
pmid: 20419153
|
29 |
C. Cotten, and J. L. Reed, (2013) Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J., 8, 595–604
https://doi.org/10.1002/biot.201200316
pmid: 23703951
|
30 |
D. S. Lun,, G. Rockwell,, N. J. Guido,, M. Baym,, J. A. Kelner,, B. Berger,, J. E. Galagan, and G. M. Church, (2009) Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol., 5, 296
https://doi.org/10.1038/msb.2009.57
pmid: 19690565
|
31 |
D. Egen, and D. S. Lun, (2012) Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics, 28, 1619–1623
https://doi.org/10.1093/bioinformatics/bts255
pmid: 22543499
|
32 |
A. M. Feist,, C. S. Henry,, J. L. Reed,, M. Krummenacker,, A. R. Joyce,, P. D. Karp,, L. J. Broadbelt,, V. Hatzimanikatis, and B. Ø. Palsson, (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3, 121
https://doi.org/10.1038/msb4100155
pmid: 17593909
|
33 |
K. Jantama,, M. J. Haupt,, S. A. Svoronos,, X. Zhang,, J. C. Moore,, K. T. Shanmugam, and L. O. Ingram, (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol.Bioeng., 99, 1140–1153
https://doi.org/10.1002/bit.21694
pmid: 17972330
|
34 |
A. M. Sánchez,, G. N. Bennett, and K.-Y. San, (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab. Eng., 8, 209–226
https://doi.org/10.1016/j.ymben.2005.11.004
pmid: 16434224
|
35 |
P. A. Jensen, and J. A. Papin, (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics, 27, 541–547
https://doi.org/10.1093/bioinformatics/btq702
pmid: 21172910
|
36 |
R. U. Ibarra,, J. S. Edwards, and B. O. Palsson, (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420, 186–189
https://doi.org/10.1038/nature01149
pmid: 12432395
|
37 |
A. M. Sánchez,, G. N. Bennett, and K. Y. San, (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog., 21, 358–365
https://doi.org/10.1021/bp049676e
pmid: 15801771
|
38 |
A. M. Sánchez,, G. N. Bennett, and K.-Y. San,(2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng., 7, 229–239
https://doi.org/10.1016/j.ymben.2005.03.001
pmid: 15885621
|
39 |
J. Schellenberger,, R. Que,, R. M. T. Fleming,, I. Thiele,, J. D. Orth,, A. M. Feist,, D. C. Zielinski,, A. Bordbar,, N. E. Lewis,, S. Rahmanian,, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc., 6, 1290–1307
https://doi.org/10.1038/nprot.2011.308
pmid: 21886097
|
40 |
R. Schauer, (2000) Achievements and challenges of sialic acid research. Glycoconj. J., 17, 485–499
https://doi.org/10.1023/A:1011062223612
pmid: 11421344
|
41 |
B. Wang, (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr., 29, 177–222
https://doi.org/10.1146/annurev.nutr.28.061807.155515
pmid: 19575597
|
42 |
M. Ishikawa, and S. Koizumi, (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr. Res., 345, 2605–2609
https://doi.org/10.1016/j.carres.2010.09.034
pmid: 20971455
|
43 |
F. Tao,, Y. Zhang,, C. Ma, and P. Xu, (2011) One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci. Rep., 1, 142
https://doi.org/10.1038/srep00142
pmid: 22355659
|
44 |
H. H. Wang,, F. J. Isaacs,, P. A. Carr,, Z. Z. Sun,, G. Xu,, C. R. Forest, and G. M. Church, (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460, 894–898
https://doi.org/10.1038/nature08187
pmid: 19633652
|
45 |
N. E. Lewis,, K. K. Hixson,, T. M. Conrad,, J. A. Lerman,, P. Charusanti,, A. D. Polpitiya,, J. N. Adkins,, G. Schramm,, S. O. Purvine,, D. Lopez-Ferrer,, et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol., 6, 390
https://doi.org/10.1038/msb.2010.47
pmid: 20664636
|
46 |
L. S. Qi,, M. H. Larson,, L. A. Gilbert,, J. A. Doudna,, J. S. Weissman,, A. P. Arkin, and W. A. Lim, (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
https://doi.org/10.1016/j.cell.2013.02.022
pmid: 23452860
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|