Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2014, Vol. 2 Issue (3): 110-125   https://doi.org/10.1007/s40484-014-0035-5
  RESEARCH ARTICLE 本期目录
Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification
Chen Jia1,2,Minping Qian1,Yu Kang3,Daquan Jiang1,4,*()
1. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
2. Beijing International Center for Mathematical Research, Beijing 100871, China
3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
4. Center for Statistical Science, Peking University, Beijing 100871, China
 全文: PDF(2124 KB)   HTML
Abstract

Fluctuating environments pose tremendous challenges to bacterial populations. It is observed in numerous bacterial species that individual cells can stochastically switch among multiple phenotypes for the population to survive in rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is generally understood to be an adaptive bet-hedging strategy. Mathematical models are essential to gain a deeper insight into the principle behind bet-hedging and the pattern behind experimental data. Traditional deterministic models cannot provide a correct description of stochastic phenotype switching and bet-hedging, and traditional Markov chain models at the cellular level fail to explain their underlying molecular mechanisms. In this paper, we propose a nonlinear stochastic model of multistable bacterial systems at the molecular level. It turns out that our model not only provides a clear description of stochastic phenotype switching and bet-hedging within isogenic bacterial populations, but also provides a deeper insight into the analysis of multidimensional experimental data. Moreover, we use some deep mathematical theories to show that our stochastic model and traditional Markov chain models are essentially consistent and reflect the dynamic behavior of the bacterial system at two different time scales. In addition, we provide a quantitative characterization of the critical state of multistable bacterial systems and develop an effective data-driven method to identify the critical state without resorting to specific mathematical models.

Key wordsphenotypic heterogeneity    phenotypic variation    multistability    gene network    stochastic gene expression
收稿日期: 2014-09-07      出版日期: 2015-01-14
Corresponding Author(s): Daquan Jiang   
 引用本文:   
. [J]. Quantitative Biology, 2014, 2(3): 110-125.
Chen Jia, Minping Qian, Yu Kang, Daquan Jiang. Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification. Quant. Biol., 2014, 2(3): 110-125.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-014-0035-5
https://academic.hep.com.cn/qb/CN/Y2014/V2/I3/110
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Kussell, E. and Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309, 2075-2078
https://doi.org/10.1126/science.1114383 pmid: 16123265
2 Smits, W. K., Kuipers, O. P. and Veening, J. W. (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol., 4, 259-271
https://doi.org/10.1038/nrmicro1381 pmid: 16541134
3 Dubnau, D. and Losick, R. (2006) Bistability in bacteria. Mol. Microbiol., 61, 564-572
https://doi.org/10.1111/j.1365-2958.2006.05249.x pmid: 16879639
4 Avery, S. V. (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol., 4, 577-587
https://doi.org/10.1038/nrmicro1460 pmid: 16845428
5 Dhar, N. and McKinney, J. D. (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol., 10, 30-38
https://doi.org/10.1016/j.mib.2006.12.007 pmid: 17215163
6 Lu, T., Shen, T., Bennett, M. R., Wolynes, P. G. and Hasty, J. (2007) Phenotypic variability of growing cellular populations. Proc. Natl. Acad. Sci. USA, 104, 18982-18987
https://doi.org/10.1073/pnas.0706115104 pmid: 18025471
7 Veening, J. W., Smits, W. K. and Kuipers, O. P. (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol., 62, 193-210
https://doi.org/10.1146/annurev.micro.62.081307.163002 pmid: 18537474
8 Fraser, D. and Kaern, M. (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol., 71, 1333-1340
https://doi.org/10.1111/j.1365-2958.2009.06605.x pmid: 19220745
9 Jablonka, E. and Raz, G. (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol., 84, 131-176
https://doi.org/10.1086/598822 pmid: 19606595
10 Snijder, B. and Pelkmans, L. (2011) Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol., 12, 119-125
https://doi.org/10.1038/nrm3044 pmid: 21224886
11 Mao, J., Blanchard, A. E. and Lu, T. (2014) Slow and steady wins the race: A bacterial exploitative competition strategy in fluctuating environments. ACS Synth. Biol
https://doi.org/10.1021/sb4002008
12 Rulands, S., Jahn, D. and Frey, E. (2014) Specialization and bet hedging in heterogeneous populations. Phys. Rev. Lett., 113, 108102
https://doi.org/10.1103/PhysRevLett.113.108102 pmid: 25238387
13 Acar, M., Mettetal, J. T. and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471-475
https://doi.org/10.1038/ng.110 pmid: 18362885
14 Salathé, M., Van Cleve, J. and Feldman, M. W. (2009) Evolution of stochastic switching rates in asymmetric fitness landscapes. Genetics, 182, 1159-1164
https://doi.org/10.1534/genetics.109.103333 pmid: 19474199
15 Leisner, M., Stingl, K., Frey, E. and Maier, B. (2008) Stochastic switching to competence. Curr. Opin. Microbiol., 11, 553-559
https://doi.org/10.1016/j.mib.2008.09.020 pmid: 18955155
16 Gaál, B., Pitchford, J. W. and Wood, A. J. (2010) Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics, 184, 1113-1119
https://doi.org/10.1534/genetics.109.113431 pmid: 20100938
17 Libby E, Rainey PB (2011) Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching. P. Roy. Soc. B-Biol. Sci., 278: 3574-3583
18 Rainey, P. B., Beaumont, H. J., Ferguson, G. C., Gallie, J., Kost, C., Libby, E. and Zhang, X. X. (2011) The evolutionary emergence of stochastic phenotype switching in bacteria. Microb. Cell Fact., 10, S14
https://doi.org/10.1186/1475-2859-10-S1-S14 pmid: 21995592
19 Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737-740
https://doi.org/10.1038/nature02298 pmid: 14973486
20 Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. and Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545-550
https://doi.org/10.1038/nature04588 pmid: 16554821
21 Tsang, J. and Van Oudenaarden, A. (2006) Exciting fluctuations: monitoring competence induction dynamics at the single-cell level. Mol. Syst. Biol., 2, 0025
https://doi.org/10.1038/msb4100064 pmid: 16738573
22 Schultz, D., Ben Jacob, E., Onuchic, J. N. and Wolynes, P. G. (2007) Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 104, 17582-17587
https://doi.org/10.1073/pnas.0707965104 pmid: 17962411
23 Sonenshein, A.L., Hoch, J.A. and Losick R. (2002) Bacillus subtilis and its closest relatives: from genes to cells Washington: American Society for Microbiology.
24 Errington, J. (2003) Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol., 1, 117-126
https://doi.org/10.1038/nrmicro750 pmid: 15035041
25 Morohashi, M., Ohashi, Y., Tani, S., Ishii, K., Itaya, M., Nanamiya, H., Kawamura, F., Tomita, M. and Soga, T. (2007) Model-based definition of population heterogeneity and its effects on metabolism in sporulating Bacillus subtilis. J. Biochem., 142, 183-191
https://doi.org/10.1093/jb/mvm121 pmid: 17545249
26 de Jong, I. G., Veening, J. W. and Kuipers, O. P. (2010) Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J. Bacteriol., 192, 2053-2067
https://doi.org/10.1128/JB.01484-09 pmid: 20154131
27 Sureka K., Ghosh, B., Dasugpta, A., Basu J., Kundu, M. and Bose Z., (2008) Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One3: e1771.
28 Gefen, O. and Balaban, N. Q. (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev., 33, 704-717
https://doi.org/10.1111/j.1574-6976.2008.00156.x pmid: 19207742
29 Ghosh, S., Sureka, K., Ghosh, B., Bose, I., Basu, J. and Kundu, M. (2011) Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst. Biol., 5, 18
https://doi.org/10.1186/1752-0509-5-18 pmid: 21272295
30 Veening, J. W., Stewart, E. J., Berngruber, T. W., Taddei, F., Kuipers, O. P. and Hamoen, L. W. (2008) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. USA., 105, 4393-4398
https://doi.org/10.1073/pnas.0700463105 pmid: 18326026
31 Beaumont, H. J., Gallie, J., Kost, C., Ferguson, G. C. and Rainey, P. B. (2009) Experimental evolution of bet hedging. Nature, 462, 90-93
https://doi.org/10.1038/nature08504 pmid: 19890329
32 Wolf, D. M., Vazirani, V. V. and Arkin, A. P. (2005) Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol., 234, 227-253
https://doi.org/10.1016/j.jtbi.2004.11.020 pmid: 15757681
33 Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633-644
https://doi.org/10.1016/j.cell.2011.07.026 pmid: 21854987
34 Zhou D, Wu D, Li Z, Qian M, Zhang MQ (2013) Population dynamics of cancer cells with cell state conversions. Quant. Biol. 1, 1-8.
35 Karmakar, R. and Bose, I. (2007) Positive feedback, stochasticity and genetic competence. Phys. Biol., 4, 29-37
https://doi.org/10.1088/1478-3975/4/1/004 pmid: 17406083
36 Mitrophanov, A. Y. and Groisman, E. A. (2008) Positive feedback in cellular control systems. BioEssays, 30, 542-555
https://doi.org/10.1002/bies.20769 pmid: 18478531
37 Mantzaris, N. V. (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys. J., 92, 4271-4288
https://doi.org/10.1529/biophysj.106.100271 pmid: 17384073
38 Vellela, M. and Qian, H. (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schl?gl model revisited. J. R. Soc. Interface, 6, 925-940
https://doi.org/10.1098/rsif.2008.0476 pmid: 19095615
39 Qian, H. and Bishop, L. M. (2010) The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks. Int. J. Mol. Sci., 11, 3472-3500
https://doi.org/10.3390/ijms11093472 pmid: 20957107
40 Qian, H. (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems?an analytical theory. Nonlinearity, 24, R19-R49
https://doi.org/10.1088/0951-7715/24/6/R01
41 Ge, H. and Qian, H. (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107-116
https://doi.org/10.1098/rsif.2010.0202 pmid: 20466813
42 Qian, H. (2012) Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179-204
https://doi.org/10.1146/annurev-biophys-050511-102240 pmid: 22404682
43 Qian, H. and Ge, H. (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol Cell Biomech, 9, 1-30
pmid: 22428359
44 McAdams, H. H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA., 94, 814-819
https://doi.org/10.1073/pnas.94.3.814 pmid: 9023339
45 Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186
https://doi.org/10.1126/science.1070919 pmid: 12183631
46 Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69-73
https://doi.org/10.1038/ng869 pmid: 11967532
47 Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415-418
https://doi.org/10.1038/nature02257 pmid: 14749823
48 Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451-464
https://doi.org/10.1038/nrg1615 pmid: 15883588
49 Raser, J. M. and O’Shea, E. K. (2005) Noise in gene expression: origins, consequences, and control. Science, 309, 2010-2013
https://doi.org/10.1126/science.1105891 pmid: 16179466
50 Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358-362
https://doi.org/10.1038/nature04599 pmid: 16541077
51 Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600-1603
https://doi.org/10.1126/science.1119623 pmid: 16543458
52 Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. and Lia, G. (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys., 37, 417-444
https://doi.org/10.1146/annurev.biophys.37.092607.174640 pmid: 18573089
53 Sanchez, A., Choubey, S. and Kondev, J. (2013) Regulation of noise in gene expression. Annu. Rev. Biophys., 42, 469-491
https://doi.org/10.1146/annurev-biophys-083012-130401 pmid: 23527780
54 Freidlin, M. I., Szücs, J. and Wentzell, A. D. (2012) Random perturbations of dynamical systems, New York: Springer-Verlag
55 Kim, D., Rath, O., Kolch, W. and Cho, K. H. (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene, 26, 4571-4579
https://doi.org/10.1038/sj.onc.1210230 pmid: 17237813
56 Kellershohn, N. and Laurent, M. (2001) Prion diseases: dynamics of the infection and properties of the bistable transition. Biophys. J., 81, 2517-2529
https://doi.org/10.1016/S0006-3495(01)75897-3 pmid: 11606267
57 Olivieri, E. and Vares, M. E. (2005) Large deviations and metastability. UK: Cambridge University Press.
58 Liu R, Li M.Y., Liu Z.P., Wu J.R., Chen L.N. and Aihara K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep
https://doi.org/10.1038/srep00813
59 Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175-1177
https://doi.org/10.1126/science.1219805 pmid: 22654061
60 Angeli, D., Ferrell, J. E. Jr and Sontag, E. D. (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA., 101, 1822-1827
https://doi.org/10.1073/pnas.0308265100 pmid: 14766974
61 Gouzé, J. L. (1998) Positive and negative circuits in dynamical systems. J. Biol. Syst., 6, 11-15
https://doi.org/10.1142/S0218339098000054
62 Snoussi, E. H. (1998) Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6, 3-9
https://doi.org/10.1142/S0218339098000042
63 Cinquin, O. and Demongeot, J. (2002) Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216, 229-241
https://doi.org/10.1006/jtbi.2002.2544 pmid: 12079373
64 Gillespie, D. T. (1992) A rigorous derivation of the chemical master equation. Physica A, 188, 404-425
https://doi.org/10.1016/0378-4371(92)90283-V
65 Kurtz, T. G. (1970) Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab., 7, 49-58
https://doi.org/10.2307/3212147
66 Kurtz, T. G. (1971) Limit theorems for sequences of jump markov processes approximating ordinary differential processes. J. Appl. Probab., 8, 344-356
https://doi.org/10.2307/3211904
67 Kurtz, T. G. (1972) The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57, 2976-2978
https://doi.org/10.1063/1.1678692
68 Gillespie, D. T. (2000) The chemical langevin equation. J. Chem. Phys., 113, 297-306
https://doi.org/10.1063/1.481811
69 Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231-237
https://doi.org/10.1038/nature01258 pmid: 12432408
70 Wilkinson, D. J. (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10, 122-133
https://doi.org/10.1038/nrg2509 pmid: 19139763
71 Meister A, Du C, Li YH, Wong WH (2014) Modeling stochastic noise in gene regulatory systems. Quant. Biol.: 1-29
72 Yao, G., Lee, T. J., Mori, S., Nevins, J. R. and You, L. (2008) A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol., 10, 476-482
https://doi.org/10.1038/ncb1711 pmid: 18364697
73 Ferrell, J. E. Jr and Machleder, E. M. (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 280, 895-898
https://doi.org/10.1126/science.280.5365.895 pmid: 9572732
74 Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426, 460-465
https://doi.org/10.1038/nature02089 pmid: 14647386
75 Corson, F. and Siggia, E. D. (2012) Geometry, epistasis, and developmental patterning. Proc. Natl. Acad. Sci. USA., 109, 5568-5575
https://doi.org/10.1073/pnas.1201505109 pmid: 22434912
76 Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131-1139
https://doi.org/10.1038/nsmb.2660 pmid: 23934149
77 Eissing, T., Conzelmann, H., Gilles, E. D., Allg?wer, F., Bullinger, E. and Scheurich, P. (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem., 279, 36892-36897
https://doi.org/10.1074/jbc.M404893200 pmid: 15208304
78 Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459, 428-432
https://doi.org/10.1038/nature08012 pmid: 19363473
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed