|
|
|
Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification |
Chen Jia1,2,Minping Qian1,Yu Kang3,Daquan Jiang1,4,*( ) |
1. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
2. Beijing International Center for Mathematical Research, Beijing 100871, China
3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
4. Center for Statistical Science, Peking University, Beijing 100871, China |
|
|
Abstract: Fluctuating environments pose tremendous challenges to bacterial populations. It is observed in numerous bacterial species that individual cells can stochastically switch among multiple phenotypes for the population to survive in rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is generally understood to be an adaptive bet-hedging strategy. Mathematical models are essential to gain a deeper insight into the principle behind bet-hedging and the pattern behind experimental data. Traditional deterministic models cannot provide a correct description of stochastic phenotype switching and bet-hedging, and traditional Markov chain models at the cellular level fail to explain their underlying molecular mechanisms. In this paper, we propose a nonlinear stochastic model of multistable bacterial systems at the molecular level. It turns out that our model not only provides a clear description of stochastic phenotype switching and bet-hedging within isogenic bacterial populations, but also provides a deeper insight into the analysis of multidimensional experimental data. Moreover, we use some deep mathematical theories to show that our stochastic model and traditional Markov chain models are essentially consistent and reflect the dynamic behavior of the bacterial system at two different time scales. In addition, we provide a quantitative characterization of the critical state of multistable bacterial systems and develop an effective data-driven method to identify the critical state without resorting to specific mathematical models. |
Key words:
phenotypic heterogeneity
phenotypic variation
multistability
gene network
stochastic gene expression
|
收稿日期: 2014-09-07
出版日期: 2015-01-14
|
Corresponding Author(s):
Daquan Jiang
|
1 |
Kussell, E. and Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309, 2075-2078
https://doi.org/10.1126/science.1114383
pmid: 16123265
|
2 |
Smits, W. K., Kuipers, O. P. and Veening, J. W. (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol., 4, 259-271
https://doi.org/10.1038/nrmicro1381
pmid: 16541134
|
3 |
Dubnau, D. and Losick, R. (2006) Bistability in bacteria. Mol. Microbiol., 61, 564-572
https://doi.org/10.1111/j.1365-2958.2006.05249.x
pmid: 16879639
|
4 |
Avery, S. V. (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol., 4, 577-587
https://doi.org/10.1038/nrmicro1460
pmid: 16845428
|
5 |
Dhar, N. and McKinney, J. D. (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol., 10, 30-38
https://doi.org/10.1016/j.mib.2006.12.007
pmid: 17215163
|
6 |
Lu, T., Shen, T., Bennett, M. R., Wolynes, P. G. and Hasty, J. (2007) Phenotypic variability of growing cellular populations. Proc. Natl. Acad. Sci. USA, 104, 18982-18987
https://doi.org/10.1073/pnas.0706115104
pmid: 18025471
|
7 |
Veening, J. W., Smits, W. K. and Kuipers, O. P. (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol., 62, 193-210
https://doi.org/10.1146/annurev.micro.62.081307.163002
pmid: 18537474
|
8 |
Fraser, D. and Kaern, M. (2009) A chance at survival: gene expression noise and phenotypic diversification strategies. Mol. Microbiol., 71, 1333-1340
https://doi.org/10.1111/j.1365-2958.2009.06605.x
pmid: 19220745
|
9 |
Jablonka, E. and Raz, G. (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol., 84, 131-176
https://doi.org/10.1086/598822
pmid: 19606595
|
10 |
Snijder, B. and Pelkmans, L. (2011) Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol., 12, 119-125
https://doi.org/10.1038/nrm3044
pmid: 21224886
|
11 |
Mao, J., Blanchard, A. E. and Lu, T. (2014) Slow and steady wins the race: A bacterial exploitative competition strategy in fluctuating environments. ACS Synth. Biol
https://doi.org/10.1021/sb4002008
|
12 |
Rulands, S., Jahn, D. and Frey, E. (2014) Specialization and bet hedging in heterogeneous populations. Phys. Rev. Lett., 113, 108102
https://doi.org/10.1103/PhysRevLett.113.108102
pmid: 25238387
|
13 |
Acar, M., Mettetal, J. T. and van Oudenaarden, A. (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet., 40, 471-475
https://doi.org/10.1038/ng.110
pmid: 18362885
|
14 |
Salathé, M., Van Cleve, J. and Feldman, M. W. (2009) Evolution of stochastic switching rates in asymmetric fitness landscapes. Genetics, 182, 1159-1164
https://doi.org/10.1534/genetics.109.103333
pmid: 19474199
|
15 |
Leisner, M., Stingl, K., Frey, E. and Maier, B. (2008) Stochastic switching to competence. Curr. Opin. Microbiol., 11, 553-559
https://doi.org/10.1016/j.mib.2008.09.020
pmid: 18955155
|
16 |
Gaál, B., Pitchford, J. W. and Wood, A. J. (2010) Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics, 184, 1113-1119
https://doi.org/10.1534/genetics.109.113431
pmid: 20100938
|
17 |
Libby E, Rainey PB (2011) Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching. P. Roy. Soc. B-Biol. Sci., 278: 3574-3583
|
18 |
Rainey, P. B., Beaumont, H. J., Ferguson, G. C., Gallie, J., Kost, C., Libby, E. and Zhang, X. X. (2011) The evolutionary emergence of stochastic phenotype switching in bacteria. Microb. Cell Fact., 10, S14
https://doi.org/10.1186/1475-2859-10-S1-S14
pmid: 21995592
|
19 |
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737-740
https://doi.org/10.1038/nature02298
pmid: 14973486
|
20 |
Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. and Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545-550
https://doi.org/10.1038/nature04588
pmid: 16554821
|
21 |
Tsang, J. and Van Oudenaarden, A. (2006) Exciting fluctuations: monitoring competence induction dynamics at the single-cell level. Mol. Syst. Biol., 2, 0025
https://doi.org/10.1038/msb4100064
pmid: 16738573
|
22 |
Schultz, D., Ben Jacob, E., Onuchic, J. N. and Wolynes, P. G. (2007) Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 104, 17582-17587
https://doi.org/10.1073/pnas.0707965104
pmid: 17962411
|
23 |
Sonenshein, A.L., Hoch, J.A. and Losick R. (2002) Bacillus subtilis and its closest relatives: from genes to cells Washington: American Society for Microbiology.
|
24 |
Errington, J. (2003) Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol., 1, 117-126
https://doi.org/10.1038/nrmicro750
pmid: 15035041
|
25 |
Morohashi, M., Ohashi, Y., Tani, S., Ishii, K., Itaya, M., Nanamiya, H., Kawamura, F., Tomita, M. and Soga, T. (2007) Model-based definition of population heterogeneity and its effects on metabolism in sporulating Bacillus subtilis. J. Biochem., 142, 183-191
https://doi.org/10.1093/jb/mvm121
pmid: 17545249
|
26 |
de Jong, I. G., Veening, J. W. and Kuipers, O. P. (2010) Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J. Bacteriol., 192, 2053-2067
https://doi.org/10.1128/JB.01484-09
pmid: 20154131
|
27 |
Sureka K., Ghosh, B., Dasugpta, A., Basu J., Kundu, M. and Bose Z., (2008) Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One3: e1771.
|
28 |
Gefen, O. and Balaban, N. Q. (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev., 33, 704-717
https://doi.org/10.1111/j.1574-6976.2008.00156.x
pmid: 19207742
|
29 |
Ghosh, S., Sureka, K., Ghosh, B., Bose, I., Basu, J. and Kundu, M. (2011) Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst. Biol., 5, 18
https://doi.org/10.1186/1752-0509-5-18
pmid: 21272295
|
30 |
Veening, J. W., Stewart, E. J., Berngruber, T. W., Taddei, F., Kuipers, O. P. and Hamoen, L. W. (2008) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl. Acad. Sci. USA., 105, 4393-4398
https://doi.org/10.1073/pnas.0700463105
pmid: 18326026
|
31 |
Beaumont, H. J., Gallie, J., Kost, C., Ferguson, G. C. and Rainey, P. B. (2009) Experimental evolution of bet hedging. Nature, 462, 90-93
https://doi.org/10.1038/nature08504
pmid: 19890329
|
32 |
Wolf, D. M., Vazirani, V. V. and Arkin, A. P. (2005) Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol., 234, 227-253
https://doi.org/10.1016/j.jtbi.2004.11.020
pmid: 15757681
|
33 |
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633-644
https://doi.org/10.1016/j.cell.2011.07.026
pmid: 21854987
|
34 |
Zhou D, Wu D, Li Z, Qian M, Zhang MQ (2013) Population dynamics of cancer cells with cell state conversions. Quant. Biol. 1, 1-8.
|
35 |
Karmakar, R. and Bose, I. (2007) Positive feedback, stochasticity and genetic competence. Phys. Biol., 4, 29-37
https://doi.org/10.1088/1478-3975/4/1/004
pmid: 17406083
|
36 |
Mitrophanov, A. Y. and Groisman, E. A. (2008) Positive feedback in cellular control systems. BioEssays, 30, 542-555
https://doi.org/10.1002/bies.20769
pmid: 18478531
|
37 |
Mantzaris, N. V. (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys. J., 92, 4271-4288
https://doi.org/10.1529/biophysj.106.100271
pmid: 17384073
|
38 |
Vellela, M. and Qian, H. (2009) Stochastic dynamics and non-equilibrium thermodynamics of a bistable chemical system: the Schl?gl model revisited. J. R. Soc. Interface, 6, 925-940
https://doi.org/10.1098/rsif.2008.0476
pmid: 19095615
|
39 |
Qian, H. and Bishop, L. M. (2010) The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks. Int. J. Mol. Sci., 11, 3472-3500
https://doi.org/10.3390/ijms11093472
pmid: 20957107
|
40 |
Qian, H. (2011) Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems?an analytical theory. Nonlinearity, 24, R19-R49
https://doi.org/10.1088/0951-7715/24/6/R01
|
41 |
Ge, H. and Qian, H. (2011) Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface, 8, 107-116
https://doi.org/10.1098/rsif.2010.0202
pmid: 20466813
|
42 |
Qian, H. (2012) Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. Annu. Rev. Biophys., 41, 179-204
https://doi.org/10.1146/annurev-biophys-050511-102240
pmid: 22404682
|
43 |
Qian, H. and Ge, H. (2012) Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. Mol Cell Biomech, 9, 1-30
pmid: 22428359
|
44 |
McAdams, H. H. and Arkin, A. (1997) Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA., 94, 814-819
https://doi.org/10.1073/pnas.94.3.814
pmid: 9023339
|
45 |
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186
https://doi.org/10.1126/science.1070919
pmid: 12183631
|
46 |
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69-73
https://doi.org/10.1038/ng869
pmid: 11967532
|
47 |
Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415-418
https://doi.org/10.1038/nature02257
pmid: 14749823
|
48 |
Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451-464
https://doi.org/10.1038/nrg1615
pmid: 15883588
|
49 |
Raser, J. M. and O’Shea, E. K. (2005) Noise in gene expression: origins, consequences, and control. Science, 309, 2010-2013
https://doi.org/10.1126/science.1105891
pmid: 16179466
|
50 |
Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358-362
https://doi.org/10.1038/nature04599
pmid: 16541077
|
51 |
Yu, J., Xiao, J., Ren, X., Lao, K. and Xie, X. S. (2006) Probing gene expression in live cells, one protein molecule at a time. Science, 311, 1600-1603
https://doi.org/10.1126/science.1119623
pmid: 16543458
|
52 |
Xie, X. S., Choi, P. J., Li, G. W., Lee, N. K. and Lia, G. (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys., 37, 417-444
https://doi.org/10.1146/annurev.biophys.37.092607.174640
pmid: 18573089
|
53 |
Sanchez, A., Choubey, S. and Kondev, J. (2013) Regulation of noise in gene expression. Annu. Rev. Biophys., 42, 469-491
https://doi.org/10.1146/annurev-biophys-083012-130401
pmid: 23527780
|
54 |
Freidlin, M. I., Szücs, J. and Wentzell, A. D. (2012) Random perturbations of dynamical systems, New York: Springer-Verlag
|
55 |
Kim, D., Rath, O., Kolch, W. and Cho, K. H. (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene, 26, 4571-4579
https://doi.org/10.1038/sj.onc.1210230
pmid: 17237813
|
56 |
Kellershohn, N. and Laurent, M. (2001) Prion diseases: dynamics of the infection and properties of the bistable transition. Biophys. J., 81, 2517-2529
https://doi.org/10.1016/S0006-3495(01)75897-3
pmid: 11606267
|
57 |
Olivieri, E. and Vares, M. E. (2005) Large deviations and metastability. UK: Cambridge University Press.
|
58 |
Liu R, Li M.Y., Liu Z.P., Wu J.R., Chen L.N. and Aihara K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep
https://doi.org/10.1038/srep00813
|
59 |
Dai, L., Vorselen, D., Korolev, K. S. and Gore, J. (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 336, 1175-1177
https://doi.org/10.1126/science.1219805
pmid: 22654061
|
60 |
Angeli, D., Ferrell, J. E. Jr and Sontag, E. D. (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA., 101, 1822-1827
https://doi.org/10.1073/pnas.0308265100
pmid: 14766974
|
61 |
Gouzé, J. L. (1998) Positive and negative circuits in dynamical systems. J. Biol. Syst., 6, 11-15
https://doi.org/10.1142/S0218339098000054
|
62 |
Snoussi, E. H. (1998) Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst., 6, 3-9
https://doi.org/10.1142/S0218339098000042
|
63 |
Cinquin, O. and Demongeot, J. (2002) Positive and negative feedback: striking a balance between necessary antagonists. J. Theor. Biol., 216, 229-241
https://doi.org/10.1006/jtbi.2002.2544
pmid: 12079373
|
64 |
Gillespie, D. T. (1992) A rigorous derivation of the chemical master equation. Physica A, 188, 404-425
https://doi.org/10.1016/0378-4371(92)90283-V
|
65 |
Kurtz, T. G. (1970) Solutions of ordinary differential equations as limits of pure jump markov processes. J. Appl. Probab., 7, 49-58
https://doi.org/10.2307/3212147
|
66 |
Kurtz, T. G. (1971) Limit theorems for sequences of jump markov processes approximating ordinary differential processes. J. Appl. Probab., 8, 344-356
https://doi.org/10.2307/3211904
|
67 |
Kurtz, T. G. (1972) The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys., 57, 2976-2978
https://doi.org/10.1063/1.1678692
|
68 |
Gillespie, D. T. (2000) The chemical langevin equation. J. Chem. Phys., 113, 297-306
https://doi.org/10.1063/1.481811
|
69 |
Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231-237
https://doi.org/10.1038/nature01258
pmid: 12432408
|
70 |
Wilkinson, D. J. (2009) Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet., 10, 122-133
https://doi.org/10.1038/nrg2509
pmid: 19139763
|
71 |
Meister A, Du C, Li YH, Wong WH (2014) Modeling stochastic noise in gene regulatory systems. Quant. Biol.: 1-29
|
72 |
Yao, G., Lee, T. J., Mori, S., Nevins, J. R. and You, L. (2008) A bistable Rb-E2F switch underlies the restriction point. Nat. Cell Biol., 10, 476-482
https://doi.org/10.1038/ncb1711
pmid: 18364697
|
73 |
Ferrell, J. E. Jr and Machleder, E. M. (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 280, 895-898
https://doi.org/10.1126/science.280.5365.895
pmid: 9572732
|
74 |
Xiong, W. and Ferrell, J. E. Jr. (2003) A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 426, 460-465
https://doi.org/10.1038/nature02089
pmid: 14647386
|
75 |
Corson, F. and Siggia, E. D. (2012) Geometry, epistasis, and developmental patterning. Proc. Natl. Acad. Sci. USA., 109, 5568-5575
https://doi.org/10.1073/pnas.1201505109
pmid: 22434912
|
76 |
Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1131-1139
https://doi.org/10.1038/nsmb.2660
pmid: 23934149
|
77 |
Eissing, T., Conzelmann, H., Gilles, E. D., Allg?wer, F., Bullinger, E. and Scheurich, P. (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J. Biol. Chem., 279, 36892-36897
https://doi.org/10.1074/jbc.M404893200
pmid: 15208304
|
78 |
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. and Sorger, P. K. (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature, 459, 428-432
https://doi.org/10.1038/nature08012
pmid: 19363473
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|