Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2015, Vol. 3 Issue (2): 69-80   https://doi.org/10.1007/s40484-015-0044-z
  RESEARCH ARTICLE 本期目录
A quantitative understanding of lac repressor’s binding specificity and flexibility
Zheng Zuo,Yiming Chang,Gary D. Stormo()
Department of Genetics and Center for Genomic Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, MO 63108, USA
 全文: PDF(2032 KB)   HTML
Abstract

Lac repressor, the first discovered transcriptional regulator, has been shown to confer multiple modes of binding to its operator sites depending on the central spacer length. Other homolog members in the LacI/GalR family (PurR and YcjW) cannot bind their operator sites with similar structural flexibility. To decipher the underlying mechanism for this unique property, we used Spec-seq approach combined with site-directed mutagenesis to quantify the DNA binding specificity of multiple hybrids of lacI and PurR. We find that lac repressor’s recognition di-residues YQ and its hinge helix loop regions are both critical for its structural flexibility. Also, specificity profiling of the whole lac operator suggests that a simple additive model from single variants suffice to predict other multivariant sites’ energy reasonably well, and the genome occupancy model based on this specificity data correlates well with in vivo lac repressor binding profile.

Key wordslac repressor    binding flexibility    Spec-seq    ionic strength
收稿日期: 2015-01-25      出版日期: 2015-08-21
Corresponding Author(s): Gary D. Stormo   
 引用本文:   
. [J]. Quantitative Biology, 2015, 3(2): 69-80.
Zheng Zuo, Yiming Chang, Gary D. Stormo. A quantitative understanding of lac repressor’s binding specificity and flexibility. Quant. Biol., 2015, 3(2): 69-80.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-015-0044-z
https://academic.hep.com.cn/qb/CN/Y2015/V3/I2/69
Fig.1  
Mutant property L2L′ L3R R′4R
Wild-type lacI 0 0.5 kT 0.3 kT
M3 Loop region N46H 0 -0.5 kT -0.4 kT
M4 Loop region I48S 0 0.6 kT 2.5 kT
M5 Loop region R51A 0 0.3 kT 1.6 kT
M7 Recognition residues Y17T, Q18T 0 1.8 kT 3.0 kT
M8 Hinge helix AQQL→ARQL 0 0 0.8 kT
Tab.1  
Mutant property Preferred site overall L2L′ Preferred site in CGG spacer L3L′
wild-type CAAA CG TTTG0 CAAA CGG TTGC1 kT CAAA CGG TTTG3.3 kT
P1 Loop regionHYSPSA->NYIPNR CAAA CG aTTT0 CAAA CGG TTGC0.8 kT CAAA CGG TTTG1.5 kT
P2 Hinge helixARSL->AQSL CAAA CG aTTG0 CAAA CGG TTGC1.9 kT CAAA CGG TTTG4.6kT
P4 Loop region HYSPSA->NYIPNRRecognition residues T15Y, T16Q CGAA CG TTCG0 CGAA CGG TTCG(L3L')0.4 kT CGAA CGG TTCG (L3L')0.4 kT
Tab.2  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Jacob, F. and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3, 318–356
https://doi.org/10.1016/S0022-2836(61)80072-7 pmid: 13718526
2 Lewis, M. (2005) The lac repressor. C. R. Biol., 328, 521–548
https://doi.org/10.1016/j.crvi.2005.04.004 pmid: 15950160
3 Gilbert, W. and Maxam, A. (1973) The nucleotide sequence of the lac operator. Proc. Natl. Acad. Sci. USA, 70, 3581–3584
https://doi.org/10.1073/pnas.70.12.3581 pmid: 4587255
4 Zuo, Z. and Stormo, G. D. (2014) High-resolution specificity from DNA sequencing highlights alternative modes of lac repressor binding. Genetics, 198, 1329–1343
https://doi.org/10.1534/genetics.114.170100 pmid: 25209146
5 Mossing, M. C. and Record, M. T. Jr. (1985) Thermodynamic origins of specificity in the lac repressor-operator interaction: Adaptability in the recognition of mutant operator sites. J. Mol. Biol., 186, 295–305
https://doi.org/10.1016/0022-2836(85)90106-8 pmid: 4087296
6 Frank, D. E., Saecker, R. M., Bond, J. P., Capp, M. W., Tsodikov, O. V., Melcher, S. E., Levandoski, M. M. and Record, M. T. Jr. (1997) Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J. Mol. Biol., 267, 1186–1206
https://doi.org/10.1006/jmbi.1997.0920 pmid: 9150406
7 Hart, D. J., Speight, R. E., Cooper, M. A., Sutherland, J. D. and Blackburn, J. M. (1999) The salt dependence of DNA recognition by NF-κB p50: a detailed kinetic analysis of the effects on affinity and specificity. Nucleic Acids Res., 27, 1063–1069
https://doi.org/10.1093/nar/27.4.1063 pmid: 9927740
8 Benos, P. V., Bulyk, M. L. and Stormo, G. D. (2002) Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res., 30, 4442–4451
https://doi.org/10.1093/nar/gkf578 pmid: 12384591
9 Stormo, G. D. (2013) Modeling the specificity of protein-DNA interactions. Quant. Biol., 1, 115–130
https://doi.org/10.1007/s40484-013-0012-4 pmid: 25045190
10 Maerkl, S. J. and Quake, S. R. (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science, 315, 233–237
https://doi.org/10.1126/science.1131007 pmid: 17218526
11 Novichkov, P. S., Laikova, O. N., Novichkova, E. S., Gelfand, M. S., Arkin, A. P., Dubchak, I. and Rodionov, D. A. (2010) RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res., 38, D111–D118
https://doi.org/10.1093/nar/gkp894 pmid: 19884135
12 Daber, R. and Lewis, M. (2009) Towards evolving a better repressor. Protein Eng. Des. Sel., 22, 673–683
https://doi.org/10.1093/protein/gzp051 pmid: 19729374
13 Record, M. T. Jr, deHaseth, P. L. and Lohman, T. M. (1977) Interpretation of monovalent and divalent cation effects on the lac repressor-operator interaction. Biochemistry, 16, 4791–4796
https://doi.org/10.1021/bi00641a005 pmid: 911790
14 von Hippel, P. H. (2014) Increased subtlety of transcription factor binding increases complexity of genome regulation. Proc. Natl. Acad. Sci. USA, 111, 17344–17345
https://doi.org/10.1073/pnas.1418978111 pmid: 25468983
15 Schumacher, M. A., Choi, K. Y., Zalkin, H. and Brennan, R. G. (1994) Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science, 266, 763–770
https://doi.org/10.1126/science.7973627 pmid: 7973627
16 Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G. and Lu, P. (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science, 271, 1247–1254
https://doi.org/10.1126/science.271.5253.1247 pmid: 8638105
17 Romanuka, J., Folkers, G. E., Biris, N., Tishchenko, E., Wienk, H., Bonvin, A. M., Kaptein, R. and Boelens, R. (2009) Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes. J. Mol. Biol., 390, 478–489
https://doi.org/10.1016/j.jmb.2009.05.022. pmid: 19450607
18 Milk, L., Daber, R. and Lewis, M. (2010) Functional rules for lac repressor-operator associations and implications for protein-DNA interactions. Protein Sci., 19, 1162–1172
https://doi.org/10.1002/pro.389 pmid: 20512969
19 Kalodimos, C. G., Boelens, R. and Kaptein, R. (2004) Toward an integrated model of protein-DNA recognition as inferred from NMR studies on the Lac repressor system. Chem. Rev., 104, 3567–3586
https://doi.org/10.1021/cr0304065 pmid: 15303828
20 Riggs, A. D., Suzuki, H. and Bourgeois, S. (1970) Lac repressor-operator interaction: I. Equilibrium studies. J. Mol. Biol., 48, 67–83
https://doi.org/10.1016/0022-2836(70)90219-6. pmid: 4915295
21 von Hippel, P. H. (2004) Completing the view of transcriptional regulation. Science, 305, 350–352
https://doi.org/10.1126/science.1101270 pmid: 15256661
22 Cournac, A. and Plumbridge, J. (2013) DNA looping in prokaryotes: experimental and theoretical approaches. J. Bacteriol., 195, 1109–1119
https://doi.org/10.1128/JB.02038-12 pmid: 23292776
23 Gama-Castro, S., Salgado, H., Peralta-Gil, M., Santos-Zavaleta, A., Mu?iz-Rascado, L., Solano-Lira, H., Jimenez-Jacinto, V., Weiss, V., García-Sotelo, J. S., López-Fuentes, A., (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res., 39, D98–D105
https://doi.org/10.1093/nar/gkq1110 pmid: 21051347
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed