|
|
|
A quantitative understanding of lac repressor’s binding specificity and flexibility |
Zheng Zuo,Yiming Chang,Gary D. Stormo( ) |
Department of Genetics and Center for Genomic Sciences and Systems Biology, School of Medicine, Washington University, St. Louis, MO 63108, USA |
|
|
Abstract: Lac repressor, the first discovered transcriptional regulator, has been shown to confer multiple modes of binding to its operator sites depending on the central spacer length. Other homolog members in the LacI/GalR family (PurR and YcjW) cannot bind their operator sites with similar structural flexibility. To decipher the underlying mechanism for this unique property, we used Spec-seq approach combined with site-directed mutagenesis to quantify the DNA binding specificity of multiple hybrids of lacI and PurR. We find that lac repressor’s recognition di-residues YQ and its hinge helix loop regions are both critical for its structural flexibility. Also, specificity profiling of the whole lac operator suggests that a simple additive model from single variants suffice to predict other multivariant sites’ energy reasonably well, and the genome occupancy model based on this specificity data correlates well with in vivo lac repressor binding profile. |
Key words:
lac repressor
binding flexibility
Spec-seq
ionic strength
|
收稿日期: 2015-01-25
出版日期: 2015-08-21
|
Corresponding Author(s):
Gary D. Stormo
|
1 |
Jacob, F. and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol., 3, 318–356
https://doi.org/10.1016/S0022-2836(61)80072-7
pmid: 13718526
|
2 |
Lewis, M. (2005) The lac repressor. C. R. Biol., 328, 521–548
https://doi.org/10.1016/j.crvi.2005.04.004
pmid: 15950160
|
3 |
Gilbert, W. and Maxam, A. (1973) The nucleotide sequence of the lac operator. Proc. Natl. Acad. Sci. USA, 70, 3581–3584
https://doi.org/10.1073/pnas.70.12.3581
pmid: 4587255
|
4 |
Zuo, Z. and Stormo, G. D. (2014) High-resolution specificity from DNA sequencing highlights alternative modes of lac repressor binding. Genetics, 198, 1329–1343
https://doi.org/10.1534/genetics.114.170100
pmid: 25209146
|
5 |
Mossing, M. C. and Record, M. T. Jr. (1985) Thermodynamic origins of specificity in the lac repressor-operator interaction: Adaptability in the recognition of mutant operator sites. J. Mol. Biol., 186, 295–305
https://doi.org/10.1016/0022-2836(85)90106-8
pmid: 4087296
|
6 |
Frank, D. E., Saecker, R. M., Bond, J. P., Capp, M. W., Tsodikov, O. V., Melcher, S. E., Levandoski, M. M. and Record, M. T. Jr. (1997) Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. J. Mol. Biol., 267, 1186–1206
https://doi.org/10.1006/jmbi.1997.0920
pmid: 9150406
|
7 |
Hart, D. J., Speight, R. E., Cooper, M. A., Sutherland, J. D. and Blackburn, J. M. (1999) The salt dependence of DNA recognition by NF-κB p50: a detailed kinetic analysis of the effects on affinity and specificity. Nucleic Acids Res., 27, 1063–1069
https://doi.org/10.1093/nar/27.4.1063
pmid: 9927740
|
8 |
Benos, P. V., Bulyk, M. L. and Stormo, G. D. (2002) Additivity in protein-DNA interactions: how good an approximation is it? Nucleic Acids Res., 30, 4442–4451
https://doi.org/10.1093/nar/gkf578
pmid: 12384591
|
9 |
Stormo, G. D. (2013) Modeling the specificity of protein-DNA interactions. Quant. Biol., 1, 115–130
https://doi.org/10.1007/s40484-013-0012-4
pmid: 25045190
|
10 |
Maerkl, S. J. and Quake, S. R. (2007) A systems approach to measuring the binding energy landscapes of transcription factors. Science, 315, 233–237
https://doi.org/10.1126/science.1131007
pmid: 17218526
|
11 |
Novichkov, P. S., Laikova, O. N., Novichkova, E. S., Gelfand, M. S., Arkin, A. P., Dubchak, I. and Rodionov, D. A. (2010) RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res., 38, D111–D118
https://doi.org/10.1093/nar/gkp894
pmid: 19884135
|
12 |
Daber, R. and Lewis, M. (2009) Towards evolving a better repressor. Protein Eng. Des. Sel., 22, 673–683
https://doi.org/10.1093/protein/gzp051
pmid: 19729374
|
13 |
Record, M. T. Jr, deHaseth, P. L. and Lohman, T. M. (1977) Interpretation of monovalent and divalent cation effects on the lac repressor-operator interaction. Biochemistry, 16, 4791–4796
https://doi.org/10.1021/bi00641a005
pmid: 911790
|
14 |
von Hippel, P. H. (2014) Increased subtlety of transcription factor binding increases complexity of genome regulation. Proc. Natl. Acad. Sci. USA, 111, 17344–17345
https://doi.org/10.1073/pnas.1418978111
pmid: 25468983
|
15 |
Schumacher, M. A., Choi, K. Y., Zalkin, H. and Brennan, R. G. (1994) Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science, 266, 763–770
https://doi.org/10.1126/science.7973627
pmid: 7973627
|
16 |
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G. and Lu, P. (1996) Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science, 271, 1247–1254
https://doi.org/10.1126/science.271.5253.1247
pmid: 8638105
|
17 |
Romanuka, J., Folkers, G. E., Biris, N., Tishchenko, E., Wienk, H., Bonvin, A. M., Kaptein, R. and Boelens, R. (2009) Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein-DNA complexes. J. Mol. Biol., 390, 478–489
https://doi.org/10.1016/j.jmb.2009.05.022.
pmid: 19450607
|
18 |
Milk, L., Daber, R. and Lewis, M. (2010) Functional rules for lac repressor-operator associations and implications for protein-DNA interactions. Protein Sci., 19, 1162–1172
https://doi.org/10.1002/pro.389
pmid: 20512969
|
19 |
Kalodimos, C. G., Boelens, R. and Kaptein, R. (2004) Toward an integrated model of protein-DNA recognition as inferred from NMR studies on the Lac repressor system. Chem. Rev., 104, 3567–3586
https://doi.org/10.1021/cr0304065
pmid: 15303828
|
20 |
Riggs, A. D., Suzuki, H. and Bourgeois, S. (1970) Lac repressor-operator interaction: I. Equilibrium studies. J. Mol. Biol., 48, 67–83
https://doi.org/10.1016/0022-2836(70)90219-6.
pmid: 4915295
|
21 |
von Hippel, P. H. (2004) Completing the view of transcriptional regulation. Science, 305, 350–352
https://doi.org/10.1126/science.1101270
pmid: 15256661
|
22 |
Cournac, A. and Plumbridge, J. (2013) DNA looping in prokaryotes: experimental and theoretical approaches. J. Bacteriol., 195, 1109–1119
https://doi.org/10.1128/JB.02038-12
pmid: 23292776
|
23 |
Gama-Castro, S., Salgado, H., Peralta-Gil, M., Santos-Zavaleta, A., Mu?iz-Rascado, L., Solano-Lira, H., Jimenez-Jacinto, V., Weiss, V., García-Sotelo, J. S., López-Fuentes, A., (2011) RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res., 39, D98–D105
https://doi.org/10.1093/nar/gkq1110
pmid: 21051347
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|