Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2015, Vol. 3 Issue (2): 81-89   https://doi.org/10.1007/s40484-015-0047-9
  RESEARCH ARTICLE 本期目录
A novel method to identify topological domains using Hi-C data
Yang Wang1,Yanjian Li1,2,Juntao Gao1,*(),Michael Q. Zhang1,3,*()
1. MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing 100084, China
2. Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
3. Department of Molecular and Cell Biology, Center for Systems Biology, the University of Texas at Dallas, Richardson, TX 75080, USA
 全文: PDF(1012 KB)   HTML
Abstract

Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.

Key wordschromatin domain    Hi-C    dynamic programming
收稿日期: 2015-04-10      出版日期: 2015-08-21
Corresponding Author(s): Juntao Gao,Michael Q. Zhang   
 引用本文:   
. [J]. Quantitative Biology, 2015, 3(2): 81-89.
Yang Wang, Yanjian Li, Juntao Gao, Michael Q. Zhang. A novel method to identify topological domains using Hi-C data. Quant. Biol., 2015, 3(2): 81-89.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-015-0047-9
https://academic.hep.com.cn/qb/CN/Y2015/V3/I2/81
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2, 292–301
https://doi.org/10.1038/35066075. pmid: 11283701
2 Dekker, J., Marti-Renom, M. A. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403
https://doi.org/10.1038/nrg3454. pmid: 23657480
3 Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. and Kostelak, R. L. (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science, 251, 1468–1470
https://doi.org/10.1126/science.251.5000.1468. pmid: 17779440
4 Bretschneider, S., Eggeling, C. and Hell, S. W. (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett., 98, 218103
https://doi.org/10.1103/PhysRevLett.98.218103 pmid: 17677813
5 Langer-Safer, P. R., Levine, M. and Ward, D. C. (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA, 79, 4381–4385
https://doi.org/10.1073/pnas.79.14.4381 pmid: 6812046
6 Lichter, P., Tang, C. J., Call, K., Hermanson, G., Evans, G. A., Housman, D. and Ward, D. C. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 247, 64–69
https://doi.org/10.1126/science.2294592 pmid: 2294592
7 Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485, 381–385
https://doi.org/10.1038/nature11049 pmid: 22495304
8 Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
https://doi.org/10.1038/nature11082 pmid: 22495300
9 Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 30, i386–i392
https://doi.org/10.1093/bioinformatics/btu443 pmid: 25161224
10 Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893
https://doi.org/10.1371/journal.pcbi.1002893 pmid: 23382666
11 Tanizawa, H., Iwasaki, O., Tanaka, A., Capizzi, J. R., Wickramasinghe, P., Lee, M., Fu, Z. and Noma, K. (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res., 38, 8164–8177
https://doi.org/10.1093/nar/gkq955 pmid: 21030438
12 Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
https://doi.org/10.1038/nature08973 pmid: 20436457
13 Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
https://doi.org/10.1016/j.cell.2014.11.021 pmid: 25497547
14 Varoquaux, N., Ay, F., Noble, W. S. and Vert, J. P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33
https://doi.org/10.1093/bioinformatics/btu268 pmid: 24931992
15 Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. and Gas, N. (1999) Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma, 108, 103–113
https://doi.org/10.1007/s004120050357 pmid: 10382072
16 Thompson, M., Haeusler, R. A., Good, P. D. and Engelke, D. R. (2003) Nucleolar clustering of dispersed tRNA genes. Science, 302, 1399–1401
https://doi.org/10.1126/science.1089814 pmid: 14631041
17 Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. and Engelke, D. R. (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev., 22, 2204–2214
https://doi.org/10.1101/gad.1675908 pmid: 18708579
18 Hoang, S. A. and Bekiranov, S. (2013) The network architecture of the Saccharomyces cerevisiae genome. PLoS One, 8, e81972
https://doi.org/10.1371/journal.pone.0081972 pmid: 24349163
19 Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
https://doi.org/10.1126/science.1181369 pmid: 19815776
20 Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472
https://doi.org/10.1016/j.cell.2012.01.010 pmid: 22265598
21 Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299–1309
https://doi.org/10.1101/gr.5571506 pmid: 16954542
22 Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S. K., Ong, C.-T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295
https://doi.org/10.1016/j.cell.2013.04.053 pmid: 23706625
23 Williamson, I., Berlivet, S., Eskeland, R., Boyle, S., Illingworth, R. S., Paquette, D., Dostie, J. and Bickmore, W. A. (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev., 28, 2778–2791
https://doi.org/10.1101/gad.251694.114 pmid: 25512564
24 Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee, C. W. H., Ye, C., Ping, J. L. H., Mulawadi, F., (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet., 43, 630–638
https://doi.org/10.1038/ng.857. pmid: 21685913
25 Duggal, G., Wang, H. and Kingsford, C. (2014) Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res., 42, 87–96
https://doi.org/10.1093/nar/gkt857 pmid: 24089144
26 Gaffney, D. J., Veyrieras, J. B., Degner, J. F., Pique-Regi, R., Pai, A. A., Crawford, G. E., Stephens, M., Gilad, Y. and Pritchard, J. K. (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biol., 13, R7
https://doi.org/10.1186/gb-2012-13-1-r7 pmid: 22293038
27 Dimas, A. S., Deutsch, S., Stranger, B. E., Montgomery, S. B., Borel, C., Attar-Cohen, H., Ingle, C., Beazley, C., Gutierrez Arcelus, M., Sekowska, M., (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science, 325, 1246–1250
https://doi.org/10.1126/science.1174148. pmid: 19644074
28 Veyrieras, J. B., Kudaravalli, S., Kim, S. Y., Dermitzakis, E. T., Gilad, Y., Stephens, M. and Pritchard, J. K. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet., 4, e1000214
https://doi.org/10.1371/journal.pgen.1000214 pmid: 18846210
29 Zeller, T., Wild, P., Szymczak, S., Rotival, M., Schillert, A., Castagne, R., Maouche, S., Germain, M., Lackner, K., Rossmann, H., (2010) Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One, 5, e10693
https://doi.org/10.1371/journal.pone.0010693 pmid: 20502693
30 Myers, A. J., Gibbs, J. R., Webster, J. A., Rohrer, K., Zhao, A., Marlowe, L., Kaleem, M., Leung, D., Bryden, L., Nath, P., (2007) A survey of genetic human cortical gene expression. Nat. Genet., 39, 1494–1499
https://doi.org/10.1038/ng.2007.16. pmid: 17982457
31 Schadt, E. E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P. Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C., (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol., 6, e107
https://doi.org/10.1371/journal.pbio.0060107. pmid: 18462017
32 Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
https://doi.org/10.1038/nature08872. pmid: 20220758
33 Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D., (2007) Population genomics of human gene expression. Nat. Genet., 39, 1217–1224
https://doi.org/10.1038/ng2142. pmid: 17873874
34 Innocenti, F., Cooper, G. M., Stanaway, I. B., Gamazon, E. R., Smith, J. D., Mirkov, S., Ramirez, J., Liu, W., Lin, Y. S., Moloney, C., (2011) Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet., 7, e1002078
https://doi.org/10.1371/journal.pgen.1002078. pmid: 21637794
35 Phillips-Cremins, J. E. (2014) Unraveling architecture of the pluripotent genome. Curr. Opin. Cell Biol., 28, 96–104
https://doi.org/10.1016/j.ceb.2014.04.006. pmid: 24813689
36 Bellman, R. and Kotkin, B. (1961) On the Approximation of Curves by Line Segments Using Dynamic Programming. Commun. ACM, 4, 284
https://doi.org/10.1145/366573.366611.
37 Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137
https://doi.org/10.1186/gb-2008-9-9-r137. pmid: 18798982
38 Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. and Haussler, D. (2002) The human genome browser at UCSC. Genome Res., 12, 996–1006
39 Ziebarth, J. D., Bhattacharya, A. and Cui, Y. (2013) CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res., 41, D188–D194
https://doi.org/10.1093/nar/gks1165. pmid: 23193294
40 Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D., , (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364
https://doi.org/10.1038/nature13992. pmid: 25409824
41 Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol., 28, 1045–1048
https://doi.org/10.1038/nbt1010-1045. pmid: 20944595
42 Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
https://doi.org/10.1093/bioinformatics/btp324. pmid: 19451168
43 Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065
https://doi.org/10.1038/ng.947. pmid: 22001755
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed