|
|
|
Network-based method to infer the contributions of proteins to the etiology of drug side effects |
Rui Li1,Ting Chen1,2,*( ),Shao Li1,*( ) |
1. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST, Department of Automation, Tsinghua University, Beijing 100084, China
2. Program in Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA |
|
|
Abstract: Studying the molecular mechanisms that underlie the relationship between drugs and the side effects they produce is critical for drug discovery and drug development. Currently, however, computational methods are still unavailable to assess drug-protein interactions with the aim of globally inferring the contributions of various classes of proteins toward the etiology of side effects. In this work, we integrated data reflecting drug-side effect relationships, drug-target relationships, and protein-protein interactions to develop a novel network-based probabilistic model, SidePro, to evaluate the contributions of proteins toward the etiology of side effects. For a given side effect, the method applies an expectation---maximization algorithm and a diffusion kernel-based approach to estimate each protein’s contribution. We applied this method to a wide range of side effects and validated the results using cross-validation and records from the Side Effect Resource database. We also studied a specific side effect, nephrotoxicity, which is known to be associated with the irrational use of the Chinese herbal compound triptolide, a diterpenoid epoxide in the Thunder of God Vine, <?A3B2 tf="Times New Roman Bold Italic (TrueType)"?>Tripterygium wilfordii Lei-Gong-Teng. Using triptolide as an example, we scored the target proteins of triptolide using our model and investigated the high-scoring proteins and their related biological processes. The results demonstrated that our model could differentiate between the potential side effect targets and therapeutic targets of triptolide. Overall, the proposed model could accurately pinpoint the molecular mechanisms of drug side effects, thus making contribution to safe and effective drug development. |
Key words:
network pharmacology
drug targets
side effects
triptolide
|
收稿日期: 2015-04-15
出版日期: 2015-11-04
|
Corresponding Author(s):
Ting Chen,Shao Li
|
1 |
Scheiber, J., Chen, B., Milik, M., Sukuru, S. C. K., Bender, A., Mikhailov, D., Whitebread, S., Hamon, J., Azzaoui, K., Urban, L., et al. (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J. Chem. Inf. Model, 49, 308–317
https://doi.org/10.1021/ci800344p
pmid: 19434832
|
2 |
Berger, S. I. and Iyengar, R. (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 129–135
https://doi.org/10.1002/wsbm.114
pmid: 20803507
|
3 |
Roses, A. D. (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat. Rev. Genet., 5, 645–656
https://doi.org/10.1038/nrg1432
pmid: 15372086
|
4 |
Stevens, J. L. and Baker, T. K. (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov. Today, 14, 162–167
https://doi.org/10.1016/j.drudis.2008.11.009
pmid: 19100337
|
5 |
Shah, R. R. (2006) Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 7, 889–908
https://doi.org/10.2217/14622416.7.6.889
pmid: 16981848
|
6 |
Zhang, W., Roederer, M. W., Chen, W.-Q., Fan, L. and Zhou, H.-H. (2012) Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics, 13, 223–231
https://doi.org/10.2217/pgs.11.137
pmid: 22256871
|
7 |
Liebler, D. C. and Guengerich, F. P. (2005) Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov., 4, 410–420
https://doi.org/10.1038/nrd1720
pmid: 15864270
|
8 |
Li, R., Ma, T., Gu, J., Liang, X. and Li, S. (2013) Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients. Sci. Rep., 3, 1543
https://doi.org/10.1038/srep01543
pmid: 23529020
|
9 |
Zhao, S. and Li, S. (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One, 5, e11764
https://doi.org/10.1371/journal.pone.0011764
pmid: 20668676
|
10 |
Zhang, B., Wang, X. and Li, S. (2013) An integrative platform of TCM network pharmacology and its application on an herbal formula, Qing-Luo-Yin. Evid-Based Compl. Alt. Med., 2013, 456747
https://doi.org/10.1155/2013/456747
pmid: 23653662
|
11 |
Li, S., Zhang, B., Jiang, D., Wei, Y. and Zhang, N. (2010) Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 11, S6
https://doi.org/10.1186/1471-2105-11-S11-S6
pmid: 21172056
|
12 |
Li, S., Zhang, B. and Zhang, N. (2011) Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol, 5, S10
https://doi.org/10.1186/1752-0509-5-S1-S10
pmid: 21689469
|
13 |
Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022
https://doi.org/10.1039/c3mb70507b
pmid: 24492828
|
14 |
Scheiber, J., Jenkins, J. L., Sukuru, S. C. K., Bender, A., Mikhailov, D., Milik, M., Azzaoui, K., Whitebread, S., Hamon, J., Urban, L., et al. (2009) Mapping adverse drug reactions in chemical space. J. Med. Chem., 52, 3103–3107
https://doi.org/10.1021/jm801546k
pmid: 19378990
|
15 |
Lee, S., Lee, K. H., Song, M. and Lee, D. (2011) Building the process-drug-side effect network to discover the relationship between biological processes and side effects. BMC Bioinformatics, 12, S2
https://doi.org/10.1186/1471-2105-12-S2-S2
pmid: 21489221
|
16 |
Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063
https://doi.org/10.1371/journal.pone.0012063
pmid: 20808786
|
17 |
Atias, N. and Sharan, R. (2011) An algorithmic framework for predicting side effects of drugs. J. Comput. Biol., 18, 207–218
https://doi.org/10.1089/cmb.2010.0255
pmid: 21385029
|
18 |
Huang, L. C., Wu, X. and Chen, J. Y. (2013) Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics, 13, 313–324
https://doi.org/10.1002/pmic.201200337
pmid: 23184540
|
19 |
Yamanishi, Y., Pauwels, E. and Kotera, M. (2012) Drug side-effect prediction based on the integration of chemical and biological spaces. J. Chem. Inf. Model, 52, 3284–3292
https://doi.org/10.1021/ci2005548
pmid: 23157436
|
20 |
Huang, L. C., Wu, X. and Chen, J. Y. (2011) Predicting adverse side effects of drugs. BMC Genomics, 12, S11
https://doi.org/10.1186/1471-2164-12-S5-S11
pmid: 22369493
|
21 |
Mizutani, S., Pauwels, E., Stoven, V., Goto, S. and Yamanishi, Y. (2012) Relating drug-protein interaction network with drug side effects. Bioinformatics, 28, i522–i528
https://doi.org/10.1093/bioinformatics/bts383
pmid: 22962476
|
22 |
Kuhn, M., Al Banchaabouchi, M., Campillos, M., Jensen, L. J., Gross, C., Gavin, A.-C. and Bork, P. (2013) Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol., 9, 663
https://doi.org/10.1038/msb.2013.10
pmid: 23632385
|
23 |
Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Côté, S., et al. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486, 361–367
pmid: 22722194
|
24 |
Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063
https://doi.org/10.1371/journal.pone.0012063
pmid: 20808786
|
25 |
Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. and Bork, P. (2010) A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6, 343
https://doi.org/10.1038/msb.2009.98
pmid: 20087340
|
26 |
Vanherweghem, J. L., Depierreux, M., Tielemans, C., Abramowicz, D., Dratwa, M., Jadoul, M., Richard, C., Vandervelde, D., Verbeelen, D., Vanhaelen-Fastre, R., et al. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet, 341, 387–391
https://doi.org/10.1016/0140-6736(93)92984-2
pmid: 8094166
|
27 |
Allard, T., Wenner, T., Greten, H. J. and Efferth, T. (2013) Mechanisms of herb-induced nephrotoxicity. Curr. Med. Chem., 20, 2812–2819
https://doi.org/10.2174/0929867311320220006
pmid: 23597204
|
28 |
Nowack, R., et al. (2011) Herbal treatments of glomerulonephritis and chronic renal failure: Review and recommendations for research. J. Pharm. Phyt., 3, 124–136
|
29 |
Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., et al. (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 39, D1035–D1041
https://doi.org/10.1093/nar/gkq1126
pmid: 21059682
|
30 |
Kuhn, M., Szklarczyk, D., Franceschini, A., von Mering, C., Jensen, L. J. and Bork, P. (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res., 40, D876–D880
https://doi.org/10.1093/nar/gkr1011
pmid: 22075997
|
31 |
Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T. K., Gronborg, M., et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 13, 2363–2371
https://doi.org/10.1101/gr.1680803
pmid: 14525934
|
32 |
Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T. and Hogue, C. W. (2001) BIND — The Biomolecular Interaction Network Database. Nucleic Acids Res., 29, 242–245
https://doi.org/10.1093/nar/29.1.242
pmid: 11125103
|
33 |
Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., et al. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res., 40, D841–D846
https://doi.org/10.1093/nar/gkr1088
pmid: 22121220
|
34 |
Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., et al. (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res., 40, D857–D861
https://doi.org/10.1093/nar/gkr930
pmid: 22096227
|
35 |
Brown, K. R. and Jurisica, I. (2005) Online predicted human interaction database. Bioinformatics, 21, 2076–2082
https://doi.org/10.1093/bioinformatics/bti273
pmid: 15657099
|
36 |
Szaszák, M., Chen, H.-D., Chen, H.-C., Baukal, A., Hunyady, L. and Catt, K. J. (2008) Identification of the invariant chain (CD74) as an angiotensin AGTR1-interacting protein. J. Endocrinol., 199, 165– 176
https://doi.org/10.1677/JOE-08-0190
pmid: 18719072
|
37 |
Basile, D. P., Liapis, H. and Hammerman, M. R. (1997) Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am. J. Physiol., 272, F640–F647
pmid: 9176375
|
38 |
Zhou, H., Miyaji, T., Kato, A., Fujigaki, Y., Sano, K. and Hishida, A. (1999) Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death. J. Lab. Clin. Med., 134, 649–658
https://doi.org/10.1016/S0022-2143(99)90106-3
pmid: 10595794
|
39 |
Qiu, L.-Q., Sinniah, R. and I-Hong Hsu, S. (2004) Downregulation of Bcl-2 by podocytes is associated with progressive glomerular injury and clinical indices of poor renal prognosis in human IgA nephropathy. J. Am. Soc. Nephrol., 15, 79–90
https://doi.org/10.1097/01.ASN.0000104573.54132.2E
pmid: 14694160
|
40 |
Harris, R. C. (2006) COX-2 and the kidney. J. Cardiovasc. Pharmacol., 47, S37–S42
https://doi.org/10.1097/00005344-200605001-00007
pmid: 16785827
|
41 |
Fujihara, C. K., Antunes, G. R., Mattar, A. L., Andreoli, N., Malheiros, D. M., Noronha, I. L., Zatz, R. and Zatz, R. (2003) Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int., 64, 2172–2181
https://doi.org/10.1046/j.1523-1755.2003.00319.x
pmid: 14633140
|
42 |
Kondor, R. I. and Lafferty, J. D. (2002) Diffusion kernels on graphs and other discrete input spaces. Proceedings, ICML, 2, 315–322
|
43 |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550
https://doi.org/10.1073/pnas.0506580102
pmid: 16199517
|
44 |
Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2, 27 .
https://doi.org/10.1145/1961189.1961199
|
45 |
Lin, C.-J. and Weng, R. C. (2004) Simple probabilistic predictions for support vector regression. Technical report, National Taiwan University, Taipei.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|